Умзч на полевых транзисторах. Умзч с комплиментарными полевыми транзисторами. схема, описание Видео: межблочные провода из витой пары своими руками

Технические характеристики
Максимальная среднеквадратичная мощность:
при RH = 4 Ом, Вт 60
при RH = 8 Ом, Вт 32
Рабочий диапазон частот. Гц 15...100 000
Коэффициент нелинейных искажений:
при f = 1 кГц, Рвых = 60 Вт, RH = 4 Ом, % 0,15
при f = 1 кГц, Рвых = 32 Вт, RH = 8 Ом, % 0,08
Коэффициент усиления, дБ 25...40
Входной импеданс, кОм 47

Настройка

Маловероятно, что какой-либо опытный экспериментатор буде иметь трудности при достижении удовлетворительных результатов при построении усилителя по этой схеме. Главные проблемы, которые следует предусмотреть - это неправильная установка элементов и повреждение МОП транзисторов при неправильном обращении с ними или при возбуждении схемы. В качестве руководства дл экспериментатора предлагается следующий перечень контрольных проверок для поиска неисправностей:
1. При сборке печатной платы сначала установите пассивные элементы и убедитесь в правильном включении полярности электролитических конденсаторов. Затем установите транзисторы VT1 ...VT4. И, наконец, установите МОП транзисторы, избегая статического заряда, замыкая одновременно выводы на землю и используя заземленный паяльник. Проверьте собранную плату на правильность установки элементов. Для этого будет полезно пользоваться расположением элементов, показанном на рис. 2 Проверьте печатные платы на отсутствие замыканий припоем дорожек и, если они есть, удалите их. Проверьте узлы паек визуально и электрически с помощью мультиметра и переделайте, если это необходимо.
2. Теперь на усилитель может быть подано напряжение питания и выставлен ток покоя выходного каскада (50...100 мА). Потенциометр R12 сначала устанавливается по минимальному току покоя (до отказа против часовой стрелки на топологии платы рис. 2). положительную ветвь питания включается амперметр с пределом измерения 1 А. Вращением движка резистора R12 добиваются показаний амперметра 50...100 мА. Установка тока покоя может быть выполнена без подключения нагрузки. Однако, если нагрузочный динамик включен в схему, он должен быть защищен предохранителем от перегрузки по постоянному току. При установленном токе покоя приемлемое значение выходного напряжения смещения должно быть меньше 100 мВ.

Излишние или беспорядочные изменения тока покоя при регулировке R12 указывают на возникновение генерации в схеме или неправильное соединение элементов. Следует придерживаться рекомендаций, описанных ранее (последовательное включение в цепь затвора резисторов, минимизация длины соединительных проводников, общее заземление). Кроме того, конденсаторы развязки по питанию должны устанавливаться в непосредственной близости) к выходному каскаду усилителя и точке заземления нагрузки. Во избежание перегрева мощных транзисторов регулирование тока покоя должно выполняться при установленных на теплоотводе МОП транзисторах.
3.После установления тока покоя амперметр должен быть удален
из цепи положительного питания и на вход усилителя может быть
подан рабочий сигнал. Уровень входного сигнала для получения полной номинальной мощности должен быть следующим:
UBX = 150 мВ (RH = 4 Ом, Ки = 100);
UBX= 160 мВ (RH = 8 Ом, Ки = 100);
UBX = 770 мВ (RH = 4 Ом, Ки = 20);
UBX = 800 мВ (RH = 8 Ом, Ки = 20).
"Подрезание" на пиках выходного сигнала при работе с номинальной мощностью указывает на плохую стабилизацию напряжения питания и может быть исправлено снижением амплитуды входного сигнала и уменьшением номинальных характеристик усилителя.
Амплитудно-частотная характеристика усилителя может быть проверена в диапазоне частот 15 Гц... 100 кГц с помощью набора для звукового тестирования или генератора и осциллографа. Искажение выходного сигнала на высоких частотах указывает на реактивный характер нагрузки и для восстановления формы сигнала потребуется подбор величины индуктивности выходного дросселя L1. Амплитудно-частотная характеристика на высоких частотах может быть выровнена с помощью компенсационного конденсатора, включенного параллельно с R6. Низкочастотная часть амплитудно-частотной характеристики корректируется элементами R7, С2.
4.Наличие фона (гудения) вероятнее всего происходит в схеме
при установке слишком высокого усиления. Наводка на входе с высоким
импедансом минимизируется использованием экранированного
кабеля, заземленного непосредственно в источнике сигнала. Низкочастотные пульсации питания, попадающие с питанием во входной каскад
усилителя, могут быть устранены конденсатором СЗ. Дополнительное
ослабление фона осуществляется дифференциальным каскадом
на транзисторах VT1, VT2 предусилителя. Jднако, если источником фона является питающее напряжение, то можно подобрать значение СЗ, R5 для подавления амплитуды пульсаций.
5. В случае выхода из строя транзисторов выходного каскада из-за короткого замыкания в нагрузке или из-за высокочастотной генерации необходимо заменить оба МОП транзистора, при этом маловероятно, чтобы из строя вышли другие элементы. При установке схему новых приборов процедура настройки должна быть повторена.

Схема блока питания

Лучшие конструкции "Радиолюбителя" Выпуск 2

Схема усилителя с изменениями:

УМЗЧ с комплиментарными полевыми транзисторами

Представляем читателям вариант стоваттного УМЗЧ с полевыми транзисторами. В этой конструкции корпусы мощных транзисторов можно монтировать на общем теплоотводе без изоляционных прокладок, и это существенно улучшает теплопередачу. В качестве второго варианта блока питания предложен мощный импульсный преобразователь, который должен иметь достаточно малый уровень собственных помех.

Применение полевых транзисторов (ПТ) в УМЗЧ до недавних пор сдерживалось скудным ассортиментом комплементарных транзисторов, а также их низким рабочим напряжением. Качество звуковоспроизведения через УМЗЧ на ПТ часто оценивают на уровне ламповых и даже выше за то, что по сравнению с усилителями на биполярных транзисторах они создают меньшие нелинейные и интермодуляционные искажения, а также имеют более плавное нарастание искажений при перегрузках. Они превосходят ламповые усилители как по демпфированию нагрузки, так и по ширине рабочей полосы звуковых частот. Частота среза таких усилителей без ООС значительно выше, чем у УМЗЧ на биполярных транзисторах, что благоприятно сказывается на всех видах искажений.

Нелинейные искажения в УМЗЧ вносит в основном выходной каскад, и для их уменьшения обычно используют общую ООС. Искажения во входном дифференциальном каскаде, используемом как сумматор сигналов от источника и цепи общей ООС, могут быть и невелики, но с помощью общей ООС снизить их невозможно

Перегрузочная способность дифференциального каскада на полевых транзисторах примерно в 100...200 раз выше, чем с биполярными транзисторами.

Применение полевых транзисторов в выходном каскаде УМЗЧ позволяет отказаться от традиционных двух-и трехкаскадных повторителей по схеме Дарлингтона с присущими им недостатками.

Хорошие результаты дает использование в выходном каскаде полевых транзисторов со структурой металл-диэлектрик-полупроводник (МДП). В связи с тем, что управление током в выходной цепи осуществляется входным напряжением (аналогично электровакуумным приборам), то при больших токах быстродействие каскада на полевых МДП-транзисторах в режиме переключения достаточно высокое (τ = 50 нс). Такие каскады обладают хорошими передаточными свойствами на высоких частотах и имеют эффект температурной самостабилизации.

К достоинствам полевых транзисторов относятся:

  • малая мощность управления в статическом и динамическом режимах;
  • отсутствие теплового пробоя и слабая подверженность вторичному пробою;
  • термостабилизация тока стока, обеспечивающая возможность параллельного включения транзисторов;
  • передаточная характеристика близка к линейной или квадратичной;
  • высокое быстродействие в режиме переключения, благодаря чему снижаются динамические потери;
  • отсутствие явления накопления избыточных носителей в структуре;
  • малый уровень шумов,
  • малые габариты и масса, большой срок службы.

Но кроме достоинств, эти приборы имеют и недостатки:

  • выход из строя при электрических перегрузках по напряжению;
  • возможно возникновение искажений термического происхождения на низких частотах (ниже 100 Гц). На этих частотах сигнал изменяется так медленно, что за один полупериод температура кристалла успевает измениться и, следовательно, изменяются пороговое напряжение и крутизна транзисторов.

Последний из отмеченных недостатков ограничивает выходную мощность, особенно при низких напряжениях питания; выход из положения - параллельное включение транзисторов и введение ООС.

Следует отметить, что в последнее время зарубежными фирмами (например, Exicon и др.) разработано немало полевых транзисторов, пригодных для аудиоаппаратуры: EC-10N20, 2SK133-2SK135, 2SK175, 2SK176 с каналом п-типа; ЕС-10Р20, 2SJ48- 2SJ50, 2SJ55, 2SJ56 с каналом р-типа. Такие транзисторы отличаются слабой зависимостью крутизны (forward transfer admitance) от тока стока и сглаженными выходными ВАХ

Параметры некоторых полевых транзисторов, в том числе и производства Минского производственного объединения "Интеграл", приведены в табл. 1.

Большинство транзисторных бестрансформаторных УМЗЧ выполнены по полумостовой схеме. При этом нагрузка включается в диагональ моста, образованного двумя источниками питания и двумя выходными транзисторами усилителя (рис. 1).

Когда комплементарных транзисторов не было, выходной каскад УМЗЧ выполняли преимущественно на транзисторах одинаковой структуры с нагрузкой и источником питания, соединенными с общим проводом (рис. 1 ,а) Два возможных варианта управления выходными транзисторами представлены на рис. 2.

В первом из них (рис. 2,а) управление нижним плечом выходного каскада оказывается в более выгодных условиях. Так как изменение напряжения питания мало, эффект Миллера (динамическая входная емкость) и эффект Эрли (зависимость тока коллектора от напряжения эмиттер-коллектор) практически не проявляются. Цепь управления верхним плечом включена здесь последовательно с самой нагрузкой, поэтому без принятия дополнительных мер (например, каскодного включения приборов) указанные эффекты проявляются в значительной степени. По этому принципу был разработан ряд удачных УМЗЧ .

По второму варианту (рис. 2,6 - такой структуре больше соответствуют МДП-транзисторы) также был разработан ряд УМЗЧ, например . Однако и в таких каскадах трудно обеспечить, даже с применением генераторов тока , симметрию управления выходными транзисторами. Другой пример симметрирования по входному сопротивлению - выполнение плеч усилителя по квазикомплементарной схеме или применение комплементарных транзисторов (см. рис. 1 ,б) в .

Стремление к симметрированию плеч выходного каскада усилителей, выполненных на транзисторах одной проводимости, привело к разработке усилителей с незаземленной нагрузкой по схеме рис. 1 ,г . Однако и здесь не удается добиться полной симметрии предыдущих каскадов. Цепи отрицательной ОС с каждого плеча выходного каскада неравнозначны; цепи ООС этих каскадов контролируют напряжение на нагрузке по отношению к выходному напряжению противоположного плеча. Кроме того, такое схемотехническое решение требует изолированных источников питания. Из-за перечисленных недостатков оно не нашло широкого применения.

С появлением комплементарных биполярных и полевых транзисторов выходные каскады УМЗЧ преимущественно строят по схемам рис. 1 ,б, в. Однако и в этих вариантах для раскачки выходного каскада необходимо применять высоковольтные приборы. Транзисторы предвыходного каскада работают с большим коэффициентом усиления по напряжению, а поэтому подвержены эффектам Миллера и Эрли и без общей ООС вносят значительные искажения, что требует от них высоких динамических характеристик. Питание предварительных каскадов повышенным напряжением снижает и КПД усилителя.

Если в рис. 1 ,б, в перенести точку соединения с общим проводом в противоположное плечо диагонали моста, получим варианты на рис. 1,д и 1,е соответственно. В структуре каскада по схеме рис. 1 ,е автоматически решается проблема изоляции выходных транзисторов от корпуса. Усилители, выполненные по таким схемам, свободны от ряда перечисленных недостатков.

Особенности схемотехники усилителя

Вниманию радиолюбителей предлагается инвертирующий УМЗЧ (рис. 3), соответствующий структурной схеме выходного каскада на рис. 1 ,е.

(нажмите для увеличения)

Входной дифференциальный каскад выполнен на полевых транзисторах (VT1, VT2 и DA1) по симметричной схеме. Их преимущества в дифференциальном каскаде общеизвестны: высокие линейность и перегрузочная способность, малые шумы. Применение полевых транзисторов существенно упростило этот каскад, так как отпала необходимость в генераторах тока. Для увеличения коэффициента усиления с разомкнутой петлей ОС сигнал снимается с обоих плеч дифференциального каскада, а перед последующим усилителем напряжения установлен эмиттерный повторитель на транзисторах VT3, VT4.

Второй каскад выполнен на транзисторах VT5-VT10 по комбинированной каскодной схеме со следящим питанием. Такое питание каскада с ОЭ нейтрализует в транзисторе входную динамическую емкость и зависимость тока коллектора от напряжения эмиттер-коллектор. В выходной ступени этого каскада применены высокочастотные БСИТ-транзисторы, которые по сравнению с биполярными (КП959 против КТ940) имеют вдвое большую граничную частоту и вчетверо меньшую емкость стока (коллектора).

Использование выходного каскада с питанием от отдельных изолированных источников позволило обойтись низковольтным питанием (9 В) для предварительного усилителя.

Выходной каскад выполнен на мощных МДП-транзисторах, причем выводы их стока (и теплоот-водящие фланцы корпусов) соединены с общим проводом, что упрощает конструкцию и сборку усилителя.

Мощные МДП-транзисторы, в отличие от биполярных, имеют меньший разброс параметров, что облегчает их параллельное включение. Основной разброс токов между приборами возникает из-за неравенства пороговых напряжений и разброса входных емкостей. Введение дополнительных резисторов сопротивлением 50 200 Ом в цепи затворов обеспечивает практически полное выравнивание задержек включения и выключения и устраняет разброс токов при переключении.

Все каскады усилителя охвачены местной и общей ООС.

Основные технические характеристики

  • С разомкнутой ООС (R6 заменен на 22 МОм, С4 исключен)
  • Частота среза, кГц......300
  • Коэффициент усиления по напряжению, дБ......43
  • Коэффициент гармоник в режиме АВ, %, не более......2

С включенной ООС

  • Выходная мощность, Вт на нагрузке 4 Ом......100
  • на нагрузке 8 Ом......60
  • Диапазон воспроизводимых частот, Гц......4...300000
  • Коэффициент гармоник, %, не более......0,2
  • Номинальное входное напряжение, В......2
  • Ток покоя выходного каскада, А......0,15
  • Входное сопротивление, кОм.....24

Благодаря тому что частота среза усилителя с разомкнутой цепью ООС относительно высока, глубина обратной связи и коэффициент гармоник во всей полосе воспроизводимых частот практически постоянны.

Снизу полоса рабочих частот УМЗЧ ограничена емкостью конденсатора С1, сверху - С4 (при емкости 1,5 пф частота среза равна 450 кГц).

Конструкция и детали

Усилитель выполнен на плате из двусторонне фольгированного стеклотекстолита (рис.4).

Плата со стороны установки элементов максимально заполнена фольгой, соединенной с общим проводом. Транзисторы VT8, VT9 снабжены небольшими пластинчатыми теплоотводами в виде "флажка". В отверстия для выводов стока мощных полевых транзисторов установлены пистоны; выводы стока транзисторов VT11, VT14 соединены с общим проводом со стороны фольги (на рисунке отмечены крестами).

В отверстия 5 -7 платы для подключения выводов сетевого трансформатора и отверстия для перемычек установлены пистоны. Резисторы R19, R20, R22, R23 выполнены из манганинового провода диаметром 0,5 и длиной 150 мм. Для подавления индуктивности провод складывают пополам и в сложенном виде (бифилярно) наматывают на оправке диаметром 4 мм.

Катушку индуктивности L1 наматывают проводом ПЭВ-2 0,8 виток к витку по всей поверхности резистора мощностью 2 Вт (МЛТ или аналогичный).

Конденсаторы С1, С5, С10, С11 - К73-17, причем С10 и С11 распаяны со стороны печатного монтажа на выводы конденсаторов С8 и С9. Конденсаторы С2, C3 - оксидные К50-35; конденсатор С4 - К10-62 или КД-2; С12 - К10-17 или К73-17.

Полевые транзисторы с каналом n-типа (VT1, VT2) нужно подобрать с примерно таким же начальным током стока, как и у транзисторов в сборке DA1. По напряжению отсечки они не должны отличаться более чем на 20 %. Микросборку DA1 К504НТЗБ можно заменить К504НТ4Б. Возможно применение подобранной пары транзисторов КП10ЗЛ (также с индексами Г, М, Д); КП307В - КП307Б (также А, Е), КП302А либо транзисторной сборки КПC315А, КПC315Б (в этом случае плату придется переработать).

В позициях VT8, VT9 можно также использовать комплементарные транзисторы серий КТ851, КТ850, а также КТ814Г, КТ815Г (с граничной частотой 40 МГц) Минского объединения "Интеграл".

Помимо указанных в таблице, можно использовать, например, следующие пары МДП транзисторов: IRF530 и IRF9530; 2SK216 и 2SJ79; 2SK133- 2SK135 и 2SJ48-2SJ50; 2SK175- 2SK176 и 2SJ55-2SJ56.

Для стереофонического варианта питание на каждый из усилителей подают от отдельного трансформатора, желательно с кольцевым или стержневым (ПЛ) магнитопроводом, мощностью 180...200 Вт. Между первичной и вторичными обмотками размещают слой экранирующей обмотки проводом ПЭВ-2 0,5; один из выводов ее соединяют с общим проводом. Выводы вторичных обмоток подводят к плате усилителя экранированным проводом, а экран соединяют с общим проводом платы. На одном из сетевых трансформаторов размещают обмотки для выпрямителей предварительных усилителей. Стабилизаторы напряжения выполнены на микросхемах IL7809AC (+9 В), IL7909AC (-9 В) - на схеме не показаны. Для подачи на плату питания 2x9 В использован соединитель ОНп-КГ-26-3 (XS1).

При налаживании оптимальный ток дифференциального каскада устанавливают подстроенным резистором R3 по минимуму искажений на максимальной мощности (примерно в середине рабочего участка). Резисторы R4, R5 рассчитаны на ток около 2...3 мА в каждом плече при начальном токе стока около 4...6 мА. При меньшем начальном токе стока сопротивление указанных резисторов необходимо пропорционально увеличить.

Ток покоя выходных транзисторов в интервале 120... 150 мА устанавливают подстроечным резистором R3, а при необходимости подбором резисторов R13, R14.

Импульсный блок питания

Тем радиолюбителям, кто испытывает трудности с приобретением и намоткой больших сетевых трансформаторов, для выходных каскадов УМЗЧ предлагается импульсный блок питания. Питание предварительного усилителя в этом случае можно осуществлять от маломощного стабилизированного БП.

Импульсный БП (его схема показана на рис. 5) представляет собой нерегулируемый автогенераторный полумостовой инвертор. Применение пропорционально-токового управления транзисторами инвертора в сочетании с насыщающимся коммутирующим трансформатором позволяет к моменту переключения автоматически выводить активный транзистор из насыщения. Это уменьшает время рассасывания заряда в базе и исключает сквозной ток, а также снижает потери мощности в цепях управления, повышая надежность и КПД инвертора.

Технические характеристики ИБП

  • Выходная мощность, Вт, не более......360
  • Выходное напряжение......2x40
  • КПД, %, не менее......95
  • Частота преобразования, кГц......25

На входе сетевого выпрямителя установлен помехоподавляющии фильтр L1C1C2. Резистор R1 ограничивает бросок тока зарядки конденсатора C3. Последовательно с резистором на плате предусмотрена перемычка Х1, вместо которой можно включить дроссель для улучшения фильтрации и увеличения "жесткости" выходной нагрузочной характеристики.

Инвертор имеет два контура положительной ОС: первый - по напряжению (с помощью обмоток II в трансформаторе Т1 и III - в Т2); второй - по току (с трансформатором тока: виток 2-3 и обмотки 1-2, 4-5 трансформатора Т2).

Устройство запуска выполнено на однопереходном транзисторе VT3. После запуска преобразователя оно отключается благодаря наличию диода VD15, так как постоянная времени цепи R6C8 значительно больше периода преобразования.

Особенность инвертора в том, что при работе низковольтных выпрямителей на большие емкости фильтра он нуждается в плавном запуске. Плавному запуску блока способствуют дроссели L2 и L3 и в некоторой степени резистор R1.

Блок питания выполнен на печатной плате из односторонне фольгированного стеклотекстолита толщиной 2 мм. Чертеж платы показан на рис. 6.

(нажмите для увеличения)

Намоточные данные трансформаторов и сведения о магнитопроводах приведены в табл. 2. Все обмотки выполнены проводом ПЭВ-2.

Перед намоткой трансформаторов острые кромки колец необходимо притупить наждачной бумагой или бруском и обмотать лакотканью (для Т1 - сложенные вместе кольца тремя слоями). Если этой предварительной обработки не сделать, то не исключено продавливание лакоткани и замыкание витков провода на магнитопровод. В результате резко возрастет ток холостого хода и разогреется трансформатор. Между обмотками 1-2, 5-6-7 и 8-9-10 наматывают проводом ПЭВ-2 0,31 в один слой виток к витку экранирующие обмотки, один конец которых (Э1, Э2) соединяют с общим проводом УМЗЧ.

Обмотка 2-3 трансформатора Т2 представляет собой виток из провода диаметром 1 мм поверх обмотки 6-7, впаянный концами в печатную плату.

Дроссели L2 и L3 выполнены на броневых магнитопроводах БЗО из феррита 2000НМ. Обмотки дросселей намотаны в два провода до заполнения каркаса проводом ПЭВ-2 0,8. Учитывая, что дроссели работают с подмагничиванием постоянным током, между чашками необходимо вставить прокладки из немагнитного материала толщиной 0,3 мм.

Дроссель L1 - типа Д13-20, его можно выполнить также на броневом магнитопроводе Б30 аналогично дросселям L2, L3, но без прокладки, намотав обмотки в два провода МГТФ-0,14 до заполнения каркаса.

Транзисторы VT1 и VT2 закреплены на теплоотводах из ребристого алюминиевого профиля с размерами 55x50x15 мм через изолирующие прокладки. Вместо указанных на схеме можно использовать транзисторы КТ8126А Минского ПО "Интеграл", а также MJE13007. Между выходами БП +40 В, -40 В и "своей" средней точкой (СТ1 и СТ2) подключены дополнительные оксидные конденсаторы К50-6 (на схеме не показаны) емкостью по 2000 мкФ на 50 В. Эти четыре конденсатора установлены на текстолитовой пластине размерами 140x100 мм, закрепленной винтами на теплоотводах мощных транзисторов.

Конденсаторы С1, С2 - К73-17 на напряжение 630 В, C3 - оксидный К50-35Б на 350 В, С4, С7 - К73-17 на 250 В, С5, С6 - К73-17 на 400 В, С8 - К10-17.

Импульсный БП подключают к плате УМ в непосредственной близости к выводам конденсаторов С6-С11. В этом случае диодный мост VD5-VD8 на плате УМ не монтируют.

Для задержки подключения акустических систем к УМЗЧ на время затухания переходных процессов, возникающих во время включения питания, и отключения АС при появлении на выходе усилителя постоянного напряжения любой полярности можно использовать простейшее или более сложное защитное устройство.

Литература

  1. Хлупнов А. Любительские усилители низкой частоты. -М.: Энергия, 1976, с. 22.
  2. Акулиничев И. Усилитель НЧ с синфазным стабилизатором режима. - Радио, 1980, № З.с.47.
  3. Гаревских И. Широкополосный усилитель мощности. - Радио, 1979, № 6. с. 43.
  4. Колосов В. Современный любительский магнитофон. - М.: Энергия, 1974.
  5. Борисов С. МДП-транзисторы в усилителях НЧ. - Радио. 1983, № 11, с. 36-39.
  6. Дорофеев М. Режим В в усилителях мощности ЗЧ. - Радио, 1991, № 3, с. 53.
  7. Сырицо А. Мощный усилитель НЧ. - Радио, 1978. № 8, с. 45-47.
  8. Сырицо А. Усилитель мощности на интегральных ОУ. - Радио, 1984, № 8, с. 35-37.
  9. Якименко Н. Полевые транзисторы в мостовом УМЗЧ. - Радио. 1986, № 9, с. 38, 39.
  10. Виноградов В. Устройство защиты АС. - Радио, 1987, № 8. с. 30.

Старое, но золотое

Старое, но золотое

Схемотехника усилителей уже прошла в своем развитии виток спирали и сейчас мы наблюдаем "ламповый ренессанс". В соответствии с законами диалектики, которые нам так упорно вдалбливали, следом должен наступить "ренессанс транзисторный". Сам факт этого неизбежен, ибо лампы, при всей своей красоте, уж очень неудобны. Даже дома. Но у транзисторных усилителей накопились свои недостатки...
Причину "транзисторного" звучания объяснили еще в середине 70-х - глубокая обратная связь. Она порождает сразу две проблемы. Первая - переходные интермодуляционные искажения (TIM-искажения) в самом усилителе, вызванные запаздыванием сигнала в петле обратной связи. С этим бороться можно только одним путем - увеличением быстродействия и усиления исходного усилителя (без обратной связи), что чревато серьезным усложнением схемы. Результат трудно прогнозируется: то ли будет, то ли нет.
Вторая проблема - глубокая обратная связь сильно снижает выходное сопротивление усилителя. А это для большинства громкоговорителей чревато возникновением тех самых интермодуляционных искажений прямо в динамических головках. Причина - при перемещении катушки в зазоре магнитной системы значительно изменяется ее индуктивность, поэтому импеданс головки тоже изменяется. При низком выходном сопротивлении усилителя это приводит к дополнительным изменениям тока через катушку, что и порождает неприятные призвуки, ошибочно принимаемые за искажения усилителя. Этим же можно объяснить парадоксальный факт, что при произвольном выборе динамиков и усилителей один комплект "звучит", а другой - "не звучит".

секрет лампового звука =
высокое выходное сопротивление усилителя
+ неглубокая обратная связь
.
Однако аналогичных результатов можно добиться и с транзисторными усилителями. Все приводимые ниже схемы объединяет одно - нетрадиционная и позабытая нынче "несимметричная" и "неправильная" схемотехника. Однако так ли она плоха, как ее представляют? Например, фазоинвертор с трансформатором - настоящий Hi-End! (рис.1) А фазоинвертор с разделенной нагрузкой (рис.2) заимствован из ламповой схемотехники...
рис.1


рис.2


рис.3

Эти схемы сейчас незаслуженно забыты. А зря. На их основе, используя современную элементную базу, можно создать простые усилители с весьма высоким качеством звучания. Во всяком случае, то, что мне доводилось собирать и слушать, звучало достойно - мягко и "вкусно". Глубина обратных связей во всех схемах невелика, есть местные ООС, а выходное сопротивление значительно. Нет и общей ООС по постоянному току.

Однако приведенные схемы работают в классе B , поэтому им присущи "переключательные" искажения. Для их устранения необходима работа выходного каскада в "чистом" классе A . И такая схема тоже появилась. Автор схемы - J.L.Linsley Hood. Первые упоминания в отечественных источниках относятся ко второй половине 70-х годов.


рис.4

Основной недостаток усилителей класса A , ограничивающий область их применения - большой ток покоя. Однако для устранения переключательных искажений есть и другой путь - использование германиевых транзисторов. Их достоинство - малые искажения в режиме B . (Когда-нибудь я напишу сагу, посвященную германию.) Другой вопрос, что найти сейчас эти транзисторы непросто, да и выбор ограничен. При повторении следующих конструкций нужно помнить, что термостойкость германиевых транзисторов невысока, поэтому не нужно экономить на радиаторах для выходного каскада.


рис.5
На этой схеме - интересный симбиоз германиевых транзиcторов с полевым. Качество звучания, несмотря на более чем скромные характеристики, очень хорошее. Чтобы освежить впечатления четвертьвековой давности, я не поленился собрать конструкцию на макете, слегка модернизировав ее под современные номиналы деталей. Транзистор МП37 можно заменить кремниевым КТ315, поскольку при налаживании все равно придется подбирать сопротивление резистора R1. При работе с нагрузкой 8 Ом мощность возрастет примерно до 3,5 Вт, емкость конденсатора C3 придется увеличить до 1000 мкФ. А для работы с нагрузкой 4 Ом придется снизить напряжение питания до 15 вольт, чтобы не превысить максимальную мощность рассеяния транзисторов выходного каскада. Поскольку общая ООС по постоянному току отсутствует, термостабильность достаточна только для работы в домашних условиях.
Две следующие схемы имеют интересную особенность. Транзисторы выходного каскада по переменному току включены по схеме с общим эмиттером, поэтому требуют небольшого напряжения возбуждения. Не требуется и традиционная вольтодобавка. Однако для постоянного тока они включены по схеме с общим коллектором, поэтому для питания выходного каскада использован "плавающий" источник питания, не связанный с "землей". Поэтому для выходного каскада каждого канала необходимо использовать отдельный источник питания. В случае применения импульсных преобразователей напряжения это не проблема. Источник питания предварительных каскадов может быть общим. Цепи ООС по постоянному и переменному току разделены, что в сочетании с цепью стабилизации тока покоя гарантирует высокую термостабильность при малой глубине ООС по переменному току. Для СЧ/ВЧ каналов - прекрасная схема.

рис.6


рис.7 Автор: А.И.Шихатов (составление и комментарии) 1999-2000
Опубликовано: сборник "Конструкции и схемы для прочтения с паяльником" М. Солон-Р, 2001, с.19-26.
  • Схемы 1,2,3,5 были опубликованы в журнале "Радио".
  • Схема 4 позаимствована из сборника
    В.А.Васильев "Зарубежные радиолюбительские конструкции" М.Радио и связь,1982, с.14...16
  • Схемы 6 и 7 позаимствованы из сборника
    Й. Боздех "Конструирование дополнительных устройств к магнитофонам" (пер. с чешск.) М.Энергоиздат 1981, с.148,175
  • Подробно о механизме возникновения интермодуляционных искажений: Должен ли УМЗЧ иметь малое выходное сопротивление?
Оглавление

УМЗЧ на полевых транзисторах

УМЗЧ на полевых транзисторах

Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы. Передаточная характеристика полевых транзисторов близка к линейной или квадратичной, поэтому в спектре выходного сигнала практически отсутствуют четные гармоники, кроме того, происходит быстрый спад амплитуды высших гармоник (как в ламповых усилителях). Это позволяет применять в усилителях на полевых транзисторах неглубокую отрицательную обратную связь или вовсе отказаться от нее. После завоевания просторов "домашнего" Hi-Fi полевые транзисторы начали наступление на автозвук. Публикуемые схемы изначально предназначались для домашних систем, но может, кто-то рискнет применить заложенные в них идеи в автомобиле...


рис.1
Эта схема уже считается классической. В ней выходной каскад, работающий в режиме AB, выполнен на МДП-транзисторах, а предварительные каскады - на биполярных. Усилитель обеспечивает достаточно высокие показатели, но для дальнейшего улучшения качества звучания биполярные транзисторы следует полностью исключить из схемы (следующая картинка).


рис.2
После того, как исчерпаны все резервы повышения качества звучания, остается только одно - однотактный выходной каскад в "чистом" классе А. Ток, потребляемый предварительными каскадами от источника более высокого напряжения и в этой, и предыдущей схеме - минимален.


рис.3
Выходной каскад с трансформатором - полный аналог ламповых схем. Это на закуску... Интегральный источник тока CR039 задает режим работы выходного каскада.


рис.4
Однако широкополосный выходной трансформатор - достаточно сложный в изготовлении узел. Изящное решение - источник тока в цепи стока - предложено фирмой

К настоящему времени разработано много вариантов УМЗЧ с выходными каскадами на полевых транзисторах. Привлекательность этих транзисторов в качестве мощных усилительных приборов неоднократно отмечалась разными авторами. На звуковых частотах полевые транзисторы (ПТ) работают как усилители тока, поэтому нагрузка на предварительные каскады незначительна и выходной каскад на ПТ с изолированным затвором можно непо­средственно подключать к предварительному каскаду усиления, работающему в линейном режиме класса А.
При использовании мощных ПТ изменяется характер нелинейных искажений (меньше высших гармоник, чем при использовании биполярных транзисторов), снижаются динамические искажения, существенно ниже уровень интермодуляционных искажений. Однако вследствие меньшей, чем у биполярных транзисторов, крутизны нелинейные искажения истокового повто­рителя оказываются большими, поскольку крутизна зависит от уровня входного сигнала.
Выходной каскад на мощных ПТ, где они выдерживают короткое замыкание в цепи нагрузки, обладает свойством термостабилизации. Некоторый недостаток такого каскада - меньший ко­эффициент использования напряжения питания, и поэтому необходимо применять более эффективный теплоотвод.
К главным же достоинствам мощных ПТ можно отнести невысокий порядок нелинейности их проходной характеристики, что сближает особенности звучания у усилителей на ПТ и ламповых, а также высокий коэффициент усиления по мощности для сигналов звукового диапазона частот.
Из последних публикаций в журнале об УМЗЧ с мощными ПТ можно отметить статьи. Несомненным достоинством усилителя из является низкий уровень искажений, а недостатком - малая мощность (15 Вт). Усилитель обладает большей мощностью, достаточной для жилых помещений, и приемлемым уровнем искажений, но представляется относительно сложным в изготовлении и настройке. Здесь и далее речь идет об УМЗЧ, предназначенных для использования с бытовыми АС мощностью до 100 Вт.
Параметры УМЗЧ, ориентированные на соответствие международным рекомендациям IEC (МЭК), определяют минимальные требования к аппаратуре категории hi-fi. Они вполне обоснованы как с психофизиологической стороны восприятия искажений человеком, так и ре­ально достижимыми искажениями аудиосигналов в акустических системах (АС), на которые собственно и работает УМЗЧ.
В соответствии с требованиями IEC 581-7 для АС категории hi-fi полный коэффициент гармонических искажений не должен превышать 2 % в диапазоне частот 250… 1000 Гц и 1 % в диапазоне свыше 2 кГц при уровне звукового давления 90 дБ на расстоянии 1 м. При характе­ристической чувствительности бытовых АС, равной 86 дБ/Вт/м, это соответствует выходной мощности УМЗЧ всего 2,5 Вт. С учетом пикфактора музыкальных программ, принимаемом равным трем (как для гауссового шума), выходная мощность УМЗЧ должна составлять около 20 Вт. В стереофонической системе звуковое давление на НЧ примерно удваивается, что позволяет отодвинуть слушателя от АС уже на 2 м. При удалении же на 3 м вполне достаточна мощность стереоусилителя 2×45 Вт.
Неоднократно отмечалось, что искажения в УМЗЧ на полевых транзисторах обусловлены, в основном, второй и третьей гармониками (как и в исправных АС). Если полагать независимыми причины возникновения нелинейных искажений в АС и УМЗЧ, то результирующий коэффи­циент гармоник по звуковому давлению определяется как корень квадратный из суммы квадратов коэффициентов гармоник УМЗЧ и АС. В этом случае, если полный коэффициент гармонических искажений в УМЗЧ в три раза ниже, чем искажения в АС (т. е. не превышает значения 0,3 %), то им можно пренебречь.
Диапазон эффективно воспроизводимых частот УМЗЧ должен быть не уже слышимого человеком - 20…20 000 Гц. Что касается скорости нарастания выходного напряжения УМЗЧ, то в соответствии с результатами, полученными в работе автора , достаточна скорость 7 В/мкс для мощности 50 Вт при работе на нагрузку 4 Ом и 10 В/мкс - при работе на нагрузку 8 Ом.
За основу предлагаемого УМЗЧ был взят усилитель в котором для «раскачки» выходного каскада в виде составных повторителей на биполярных транзисторах использовался быстродействующий ОУ со следящим питанием. Следящее питание использовалось также для цепи смещения выходного каскада.

В усилитель внесены следующие изменения: выходной каскад на комплементарных парах биполярных транзисторов заменен каскадом с квазикомплементарной структурой на недорогих ПТ с изолированным затвором IRFZ44 и ограничена глубина общей СОС до 18 дБ. Принципиальная схема усилителя показана на рис. 1.

В качестве предварительного усилителя использован ОУ КР544УД2А с высоким входным сопротивлением и повышенным быстродействием. Он содержит входной дифференциальный каскад на ПТ с р-n переходом и выходной двухтактный повторитель напряжения. Внутренние элементы частотной коррекции обеспечивают стабильность в различных режимах обратной связи, в том числе в повторителе напряжения.
Входной сигнал поступает через ФНЧ RnC 1 с частотой среза около 70 кГц (здесь внутреннее сопротивление источника сигнала = 22 кОм). который используется для ограничения спектра сигнала, поступающего на вход усилителя мощности. Цепь R1C1 обеспечивает устойчивость УМЗЧ при изменении величины RM от нуля до бесконечности. На неинвертирующий вход ОУ DA1 сигнал проходит через ФВЧ, построенный на элементах С2, R2 с частотой среза 0,7 Гц, служащий для отделения сигнала от постоянной составляющей. Местная ООС для операционного усилителя выполнена на элементах R5, R3, СЗ и обеспечивает коэффициент усиления, равный 43 дБ.
Стабилизатор напряжения двухпо-лярного питания ОУ DA1 выполнен на элементах R4, С4, VDI и R6, Сб. VD2 соответственно. Напряжение стабилизации выбрано равным 16 В. Резистор R8 совместно с резисторами R4, R6 образуют делитель выходного напряжения УМЗЧ для подачи «следящего» питания на ОУ, размах которого не должен превышать предельных значений синфазного входного напряжения ОУ, т. е. +/-Ю В. «Следящее» питание позволяет суще­ственно увеличить размах выходного сигнала ОУ.
Как известно, для работы полевого транзистора с изолированным затвором, в отличие от биполярного, требуется смещение около 4 В. Для этого в схеме, приведенной на рис. 1, для транзистора VT3 применена схема сдвига уровня сигнала на элементах R10, R11 иУОЗ.У04на 4,5 В. Сигнал с выхода ОУ через цепь VD3VD4C8 и резистор R15 поступает на затвор транзистора VT3, постоянное напряжение на котором относительно общего провода равно +4,5 В.
Электронный аналог стабилитрона на элементахVT1, VD5, VD6, Rl2o6ecne4H-вает сдвиг напряжения на-1,5 В относительно выхода ОУ для обеспечения необходимого режима работы транзистора VT2. Сигнал с выхода ОУ через цепь VT1C9 также поступает на базу включенного по схеме с общим эмиттером транзистора VT2, который инвертирует сигнал.
На элементах R17. VD7, С12, R18 собрана цепь регулируемого сдвига уровня, позволяющая задать необходимое смещение для транзистора VT4 и тем самым установить ток покоя око­нечного каскада. Конденсатор СЮ обеспечивает «следящее питание» цепи сдвига уровня путем подачи выходного напряжения УМЗЧ в точку соединения резисторов R10, R11 для стабилизации тока в этой цепи. Соединение транзисторов VT2 и VT4 формирует виртуальный полевой транзистор с каналом р-типа. т. е. образуется квазикомплементарная пара с выходным транзистором VT3 (с каналом п-типа).
Цепь С11R16 увеличивает устойчивость усилителя в ультразвуковом диапазоне частот. Керамические конденсаторы С13. С14. установленные в непосредственной близости от выход­ных транзисторов, служат той же цели. Защита УМЗЧ от перегрузок при коротких замыканиях в нагрузке обеспечивается плавкими предохранителями FU1-FU3. так как полевые транзисторы IRFZ44 имеют максимальный ток стока 42 А и выдерживают перегрузки до сгорания предохранителей.
Для уменьшения постоянного напряжения на выходе УМЗЧ, а также снижения нелинейных искажений введена общая ООС на элементах R7, С7. R3, СЗ. Глубина ООС по переменному току ограничена значением 18.8 дБ, что стабилизирует коэффициент гармоник в звуковом диа­пазоне частот. По постоянному току ОУ совместно с выходными транзисторами работаете режиме повторителя напряжения, обеспечивая постоянную составляющую выходного напряжения УМЗЧ не более нескольких милливольт.

На рисунке показана схема 50 Вт усилителя с выходными полевыми MOSFET транзисторами.
Первый каскад усилителя представляет собой дифференциальный усилитель на транзисторах VT1 VT2.
Второй каскад усилителя состоит из транзисторов VT3 VT4. Оконечный каскад усилителя состоит из МОП-транзисторов IRF530 и IRF9530. Выход усилителя через катушку L1 соединен с нагрузкой 8 Ом.
Цепь состоящий из R15 и C5 предназначена для снижения уровня шума. Конденсаторы С6 и С7 фильтры питания. Сопротивление R6 предназначено для регулировки тока покоя.

Примечание:
Используйте двухполярный источник питания +/-35В
L1 состоит из 12 витков медного изолированного провода диаметром 1мм.
С6 и С7 должен быть рассчитан 50В, остальные электролитические конденсаторы на 16В.
Необходим радиатор для МОП-транзисторов. Размером 20x10x10 см из алюминия.
Источник — http://www.circuitstoday.com/mosfet-amplifier-circuits

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 21.09.2014

    Эта схема автоматического выключателя освещения в темное время суток автоматически включит свет и выключается его утром. В качестве датчика освещения используется фоторезистор LDR. К схеме могут быть подключены любые лампы (люминесцентные, накаливания…). Основа автоматического выключателя триггер Шмитта на таймере 555. LDR и таймер 555 используются совместно для автоматического переключения. Свет …

  • 26.06.2018

    В данном примере показана возможность взаимодействия php и Arduino. Тест проводится на Ubuntu 14.04, установлен веб сервер Apachе 2, php 5.5. В тесте опробована включение и выключение цифрового выхода, а так же опрос состояния выхода при помощи php. test.php