Транкинговые системы связи. Транкинговые системы Структурная схема базовой станции для системы транковой радиосвязи

Первые системы мобильной радиосвязи появились в США в конце 30-х гг. Это были одноканальные конвенциональные системы, предназначенные, в первую очередь, для радиосвязи в полиции и армии. Во время Второй мировой войны были созданы первые многоканальные системы с "ручным" переключением каналов.

Существенный недостаток конвенциальных систем - их незащищенность от несанкционированного применения частотных ресурсов. Любой сведущий в радиотехнике радиолюбитель способен собрать устройство для настройки на используемые данной системой частоты и стать, таким образом, несанкционированным пользователем. Кроме того, в этих системах непросто отключить абонентов, создающих чрезмерную нагрузку бесконечными неделовыми "беседами". Связь абонентских терминалов с телефонной сетью общего пользования (ТфОП) реализована далеко не во всех конвенциальных системах.

Основная идея транкинговой связи состоит в том, что при поступлении запроса от абонента на установление соединения система автоматически определяет свободные каналы и назначает один из них данной паре или группе абонентов. Частично проблема автоматизации выбора канала была решена в так называемых псевдотранкинговых системах, к которым можно отнести популярные в России SmarTrunk/SmarTrunk II фирмы SmarTrunk System и ArcNet компании Motorola. Их радиостанции не имеют выделенного управляющего канала (control channel) и в поисках свободного сканируют выделенный диапазон частот. Большинство подобных систем (за исключением ArcNet) являются однозонововыми.

В конце 70-х гг. рынок средств радиосвязи пополнился первыми аналоговыми транкинговыми системами с выделенным управляющим каналом. Такие системы реализуют передачу речевой информации по принципу "один канал - одна несущая", частотный разнос каналов обычно составляет 25 или 12,5 кГц. Теоретически, при достаточном количестве частотных каналов, они способны обслуживать десятки тысяч абонентов. Однако реальные значения выделенного частотного ресурса ограничивают число абонентов аналоговой транкинговой сети до 3-5 тыс.

Кроме того, эти системы по-прежнему не решают проблему защиты сети от несанкционированного доступа. Системы на базе аналоговых стандартов обеспечивают связь с ТфОП абонентских терминалов, но такие терминалы весьма дороги (1500-2000 дол.). Существенным недостатком данных систем является также ограниченное число групп пользователей. И хотя реализация функции динамического переконфигурирования групп позволяет обойти это ограничение, овчинка не всегда стоит выделки: сложность оборудования приводит к существенному удорожанию инфраструктуры.

В начале 90-х гг. стали появляться транкинговые системы, использующие цифровые технологии передачи голосового сигнала. Сегодня наибольшую известность получили такие цифровые стандарты, как APCO25, TETRA и PRISM (цифровая версия EDACS). Они позволяют значительно увеличить емкость системы - до нескольких тысяч абонентов. Кроме того, в них практически решена проблема защиты данных и конфиденциальности переговоров, поскольку стать несанкционированным пользователем цифровой системы или прослушать канал невозможно.

Многие современные системы транкинговой связи (рис. 1) - как аналоговые, так и цифровые - способны осуществлять передачу данных по каналу голосовой связи, т. е. выполнять функции беспроводного модема. При этом в аналоговых стандартах скорость передачи данных не превышает 4800 бит/с, а в цифровых достигает более высоких значений - от 9600 бит/с до 28 кбит/с (TETRA). В отличие от аналоговых, цифровые системы транкинговой связи позволяют передавать текстовые сообщения через управляющие каналы (пейджинг). Текст сообщения выводится на дисплей абонентского терминала.

В настоящее время можно выделить три различные сферы применения систем мобильной радиосвязи: государственные (полиция, пожарная охрана, скорая помощь и т. п.); - типа PS (Public Safety); частные, типа PMR (Private Mobile Radio); коммерческие сети общего пользования SMR (Shared Mobile Radio).

Рисунок 1.
Технологии мобильной связи (* технологии на базе TDMA)

Системы первого типа обычно рассчитаны на сравнительно небольшое число абонентов (как правило, не более 500-1000). Для них характерны повышенные требования к обеспечению надежности и конфиденциальности, а также наличие специальных функций, подобных Emergency Call. Стоимость абонентских терминалов систем PS достаточно высока. Из упомянутых ранее сетей к категории Public Safety/PMR относятся SmartNet, EDACS/ PRISM, системы на базе стандарта APCO25, а также сети, основой которых стал разрабатываемый в настоящее время цифровой стандарт TETRA.

Коммерческие системы типа SMR отличает большая емкость (число абонентов может достигать десятков тысяч), возможность предоставления дополнительных информационных услуг, а также умеренная стоимость абонентских терминалов. Среди них есть сети, построенные на базе SmartZone, протоколов MPT1327, LTR/ESAS и системы GeoNet. Отметим, что большинство существующих аналоговых систем SMR имеют ограничения на повторное использование частот и переключение каналов, а также автоматическую идентификацию абонентов при их перемещении из одной зоны в другую и т. п.

В отличие от систем конвенциональной и транкинговой радиосвязи мобильная телефонная сотовая связь предназначена, в первую очередь, для обеспечения персональной мобильной голосовой связи "один на один" в дуплексном режиме. Первое поколение сотовых технологий, появившееся в начале 80-х гг., использовало аналоговые стандарты. Наиболее широко в мире (в том числе в России) распространены североамериканский стандарт AMPS, британский TACS и скандинавский NMT-450.

Применение цифровых технологий позволило понять, что два разных вида мобильной голосовой связи - сотовая и транкинговая - имеют много общего (территориальная организация системы, инфраструктура, организация выхода на ТфОП и т. п.). Однако аналоговые технологии транкинговых систем неспособны обеспечить уровень сервиса, предоставляемый мобильной телефонной связью.

В середине 90-х гг. компания Motorola решила реализовать идею интегрированной системы, сочетающей в себе возможности групповой и диспетчерской радиосвязи, мобильной сотовой телефонной связи, а также передачи алфавитно-цифровых сообщений (пейджинга) и данных. Предлагаемая система должна была обеспечить современный уровень сервиса для всех видов связи. Все это было реализовано в технологии iDEN (integrated Digital Enhanced Network).

Услуги системы

Мобильная диспетчерская радиосвязь на базе технологии iDEN обеспечивает все виды услуг, предоставляемых современными цифровыми транкинговыми системами:

  • групповой вызов (group call) для мобильных абонентов и диспетчеров в режиме полудуплексной связи. Для реализации вызова достаточно одного нажатия кнопки; время установления связи не превышает 0,5 с. При этом используется лишь один канал речевой связи - вне зависимости от числа абонентов в группе. Число возможных групп в iDEN достаточно велико (65 535), что избавляет от необходимости иметь функцию динамического переконфигурирования групп. Все конфигурации могут быть созданы заранее: при необходимости абоненты просто переходят в соответствующие группы. Члены группы могут находиться на расстоянии десятков и сотен километров друг от друга (разумеется, в пределах зоны покрытия системы);
  • персональный вызов (private call) в полудуплексном режиме, когда в разговоре участвуют только два абонента и обеспечивается полная конфиденциальность переговоров. Заметим, что в режиме группового и индивидуального вызова на дисплее абонентского терминала вызываемого абонента появляется имя вызывающего либо его цифровой идентификатор;
  • сигнализация вызова (call alert) - передача специального сигнала абоненту (или группе), указывающего на необходимость установления радиосвязи. Если в этот момент абонент находится вне зоны системы либо абонентский терминал отключен, вызов запоминается в системе. В тот момент, когда абонент становится доступным, он получает звуковой сигнал, а на экране терминала появляется идентификатор вызывающего абонента. Только после этого вызывающий абонент получает подтверждение получения вызова.

Кроме услуг, характерных для обычной транкинговой связи, система iDEN предоставляет ряд возможностей современных мобильных телефонных систем:

  • мобильная телефонная связь между абонентами в том числе и через ТфОП (как входящая, так и исходящая в дуплексном режиме). Система iDEN обеспечивает функции локальной телефонии (мини-АТС, УПАТС) голосовую почту (voice mail), междугороднюю и международную связь;
  • передачу текстовых сообщений. Абоненты могут принимать алфавитно-цифровые сообщения, отображенные на экране абонентского терминала, который способен хранить до 16 сообщений по 140 символов. При этом обеспечивается как групповая, так и индивидуальная рассылка сообщений. Получение текстовых сообщений возможно одновременно с сеансом мобильной телефонной связи;
  • передачу данных. Портативные (носимые) терминалы iDEN имеют встроенные модемы и могут подключаться к ПК через адаптер RS-232С. В режиме коммутации каналов обеспечивается скорость передачи данных до 9600 бит/с, а в пакетном режиме - до 64 кбит/с. Для повышения достоверности передачи данных в системе используется схема коррекции ошибок с опережением. Функция передачи данных позволяет мобильным абонентам принимать и посылать факсимильные сообщения и электронную почту, обмениваться данными с компьютерами офиса и обеспечивает доступ к Internet. В пакетном режиме поддерживается стандартный сетевой протокол TCP/IP.

Отметим, что добавление функции передачи данных к существующей системе iDEN не требует установки на базовых станциях (БС) дополнительного оборудования. Необходимо лишь установить дополнительные блоки центральной инфраструктуры управления системой и инсталлировать соответствующее ПО на базовых станциях и центральной системе.

Абонентские терминалы

Хотя система iDEN обеспечивает несколько видов связи, это не означает, что абоненту необходимо "подписываться" на все виды услуг и, соответственно, приобретать у оператора полнофункциональный абонентский терминал. Пользователь всегда может выбрать модель, которая соответствует интересующему его пакету услуг. Стоимость портативных абонентских терминалов iDEN и цифровых сотовых телефонов примерно одинакова.

Портативные терминалы i370/r370 способны работать и как транкинговые радиостанции, и как мобильные телефоны. Они оснащены многострочным ЖК-дисплеем, на который выводятся списки доступных групп (абонентов) и алфавитно-цифровые сообщения. Усовершенствованный многофункциональный терминал i600 имеет меньшие размеры и вес, а также увеличенный срок службы батарей.

Новейшая модель портативного терминала i1000 имеет еще меньшие вес и размер: его вес без батарей равен 120 г, размеры - 120х60х30 мм.

Модели i470/r470 оснащены встроенным модемом, что позволяет использовать их для передачи данных и факсимильных сообщений. Кроме того, эти терминалы поддерживают дополнительные функции системы iDEN, такие как одновременная работа в нескольких группах, обеспечение связи в режиме изолированной БС (при нарушении связи с центральной инфраструктурой системы), Emergency Call и т. п.

Модели r370 и 470, удовлетворяющие требованиям военных стандартов США, имеют ударопрочный корпус и не боятся влаги. Выходная мощность сигнала портативных терминалов всех типов - 600 мВт.

Семейство мобильных абонентских терминалов iDEN состоит из трех моделей - m100, m370 и m470. Первый работает только в режиме dispatch radio, два других оснащены телефонной трубкой и поддерживают мобильную телефонную связь. Кроме того, модель m470 имеет встроенный модем и обеспечивает те же специальные функции, что и терминалы i470/r470. Все типы мобильных терминалов имеют выходную мощность 3 Вт.

В системе iDEN предусмотрены также настольные диспетчерские станции, выполненные на базе мобильных терминалов m100/m370/m470. Они имеют внешнюю антенну, настольный микрофон и блок питания от сети переменного тока.

Радиоинтерфейс и кодирование голоса

Основой технологии iDEN является стандарт TDMA (Time Division Multiple Access), в соответствии с которым по каждому частотному каналу шириной 25 кГц одновременно передаются 6 оцифрованных речевых сигналов. Технология iDEN не требует, чтобы все частотные каналы были смежными.

Временной интервал 90 мс разделен на 6 временных слотов продолжительностью по 15 мс, в каждом из которых передается один голосовой сигнал (рис. 2). Применение модуляции радиосигнала по методу M16-QAM (Quadrature Amplitude Modulation) обеспечивает суммарную скорость передачи данных по одному частотному каналу 64 кбит/с (скорость передачи в голосовом канале - 7,2 кбит/с). Адекватное воспроизведение человеческого голоса и других звуков при столь невысокой скорости передачи достигается за счет использования усовершенствованной схемы кодирования по алгоритму VSELP.

Рисунок 2.
Емкость частотного канала iDEN

Диапазон частот

Система на базе технологии iDEN работает в стандартном для Америки и Азии транкинговом диапазоне 806-825/851-870 МГц. Отметим, что с недавних пор и в России часть этого диапазона, а именно 815-820/860-865 МГц, также отведена под системы транкинговой радиосвязи (рис. 3).

Рисунок 3.
Диапазон частот, отведенный для системы iDEN в России: мобильные терминалы (МТ) 806-821 МГц; базовые станции (БС) 851-866 МГц

При разработке технологии iDEN Motorola хотела добиться максимально эффективного использования частотного ресурса, по крайней мере не уступающего существующим реализациям стандарта CDMA. Поскольку iDEN обеспечивает одновременную передачу по каждому частотному каналу шириной 25 кГц шести речевых сигналов, то в 1 МГц спектра можно разместить 240 таких каналов. Для сравнения - при ширине полосы 1 МГц аналоговые и цифровые системы транкинговой связи способны поддерживать не более 80, аналоговые системы сотовой связи - от 30 до 40, а системы в стандарте GSM - 40 голосовых каналов (рис. 4).

Рисунок 4.
Сравнение эффективности использования спектров. В 1 МГц спектра можно разместить голосовых каналов (ГК): аналоговых транкинговых систем - 40/80; аналоговых сотовых систем - 33-40; GSM - 40; TETRA - 160; iDEN - 240

Структура системы iDEN

Система на базе технологии iDEN состоит из двух основных компонентов: БС и центральной инфраструктуры. (рис. 5). Инфраструктура iDEN организована так, чтобы максимально использовать функциональные возможности БС, поэтому наиболее важным функциональным элементом является базовая станция EBTS Enhanced Base Transceiver System. В состав EBTS входит интегрированный контроллер узла (iSC), до 20 базовых радиостанций (BR) типа omni или 24 секторных BR, усилитель и передатчики радиосигнала, синхронизирующий приемник, антенны БС.

Рисунок 5.
Структура системы на базе технологии iDEN: * обеспечивают телефонную связь; ** обеспечивают радиосвязь; *** предоставляются оператором системы; DACS (Digital Access Crossconnect Switch) - коммутатор цифрового доступа; IWF (Interworking Function) - интерфейс передачи данных с ТфОП; VMS (Voice Mail System) - голосовая почта

EBTS обеспечивает взаимодействие между системой и абонентскими устройствами, поддерживает передачу голосового трафика на нескольких частотных каналах, а также выполняет целый ряд управляющих функций, например разделение трафика радио- и телефонной связи, синхронизацию работы БС и абонентских терминалов, контроль уровня радиосигнала и др. Многофункциональность EBTS позволяет существенно снизить нагрузку на компоненты центральной инфраструктуры, в первую очередь на MSC (Mobile Switching Center). Передатчик EBTS поддерживает не более 144 голосовых каналов для одного узла системы.

Основная функция BSC (Base Site Controller) - управление связью при перемещении абонентских терминалов от одной зоны покрытия к другой (handover). Каждый BSC способен поддерживать до 30 зон, выполняя весь комплекс действий по концентрации трафика, поступающего от узловых станций, и его распределению по соответствующим зонам.

Транскодер XCDR выполняет прямое и обратное преобразование аудиосигнала формата VSELP в цифровой формат PCM.

Пакетный коммутатор MPS (Metro Packet Switch) состоит из коммутатора и дупликатора пакетов. Он передает голосовые пакеты, поступающие в режиме dispatch radio, и управляющую информацию от EBTS к DAP и обратно.

Система диспетчеризации DAP (Dispatch Application Processor) выполняет управление групповым и персональным вызовом, сигнализацией вызова и другие функции. При большом числе абонентов системы возможно создание кластеров из четырех DAP.

Блоки регистрации местоположения абонента HLR/VLR (Home Location Register)/Visited Location Register) обслуживают мобильную телефонную связь. В HLR хранится полная информация обо всех абонентских терминалах, зарегистрированных в различных географических сегментах системы. VLR содержит сведения о перемещении абонентских устройств и предоставляет системе информацию, необходимую для выполнения роуминга. Отметим, что в системе iDEN нет роуминга в том смысле, в котором он понимается в сотовых системах, поскольку для связи географически удаленных сегментов системы используются не ТфОП, а выделенные каналы E1.

Коммутатор MSC (Mobile Switching Center) обеспечивает интерфейс между ТфОП и мобильными телефонами iDEN, выполняя типичные функции подобного коммутатора, а также управляет передачей при перемещении абонентов из зоны, контролируемой одним BSC, в зону, контролируемую другим. Если сеть iDEN охватывает значительную территорию, в ней могут быть установлены несколько MSC. Функции MSC системы iDEN полностью идентичны функциям коммутатора сотовой сети стандарта GSM.

Основным управляющим модулем системы является OMC (Operation Maitenance Center), который обеспечивает конфигурирование системы, управление аварийными ситуациями, сбор статистических данных о работе системы и ряд других функций управления.

Служба коротких сообщений SMS (Short Message Service) поддерживает все функции передачи текстовых сообщений, включая текстовые извещения о наличии сообщений для данного абонента (voice mail).

iDEN MicroLite

В настоящее время компания Motorola завершает разработку системы iDEN MicroLite, которая представляет собой "малую" систему на базе iDEN и ориентирована на обслуживание от нескольких сотен до нескольких тысяч абонентов. При сохранении всех технологических решений iDEN, применении того же абонентского оборудования и базовых станций эта система отличается, в первую очередь, максимальным количеством частотных каналов (их 40).

Основное технологическое отличие iDEN MicroLite от iDEN состоит в организации центральной инфраструктуры системы. В системе iDEN MicroLite она реализована на одной компьютерной платформе стандарта Compact PCI (вариант платформы PCI для промышленных компьютеров), работающей под управлением ОС реального времени Neutrino фирмы QNX Labs.

Первая версия iDEN MicroLite будет обеспечивать два вида связи - групповую (индивидуальную) радиосвязь и мобильную телефонную связь. В следующих версиях в систему будут добавлены службы передачи коротких сообщений и коммутируемой/пакетной передачи данных. Максимальное количество базовых станций, которое способна поддерживать центральная инфраструктура первой версии системы равно 5, в дальнейшем оно будет увеличено до 8-10.

При необходимости перехода от iDEN MicroLite к полной системе iDEN требуется новая установка центральной инфраструктуры системы, однако модифицировав соответствующее ПО, можно использовать абонентские терминалы и имеющееся оборудование БС.

Поставки системы iDEN MicroLite начнутся во II квартале 1999 г. Техническая проработка проектов систем iDEN MicroLite предполагается с III квартала 1998 г.

Области применения iDEN

Технология iDEN ориентирована на создание систем типа SMR (Shared Mobile Radio), т. е. коммерческих сетей, предоставляющих интегрированные услуги организациям и частным лицам. Чтобы обеспечить связь отдельных подразделений и групп сотрудников, для каждого корпоративного пользователя системы создается так называемый "флот" - виртуальная частная сеть в рамках сети организации. Внутри флота могут создаваться разные группы, соответствующие подразделениям компании (максимальное число групп в одном флоте - 255). Возможность случайного или преднамеренного вторжения абонентов в чужие флоты абсолютно исключена. Члены флота могут находиться в разных географических регионах, перемещаться из одного города в другой.

Таким образом, организация может построить собственную мобильную телекоммуникационную систему, полностью эквивалентную сети данной организации. При этом ей не нужно приобретать оборудование и строить антенны, а также тратить несколько месяцев на установку и отладку системы. Все что необходимо сделать - стать корпоративным пользователем уже существующей системы iDEN.

Где и когда

Первая коммерческая система на базе технологии iDEN развернутая в США компанией NEXTEL в середине 1994 г., сейчас является общенациональной. Она насчитывает около 4500 БС и около 2 млн абонентов. В юго-западных штатах США существует другая сеть на базе технологии iDEN, оператором которой является энергетическая компания Southern Co. Кроме того, в юго-западных провинциях Канады компания Clearnet тоже предоставляет услуги связи в сети iDEN, состоящей из 320 БС.

Что касается Латинской Америки, сети iDEN уже существуют в Боготе (Колумбия) и Буэнос-Айресе (Аргентина). Они строятся в Сан-Пауло и Рио-де-Жанейро (Бразилия), а также в Мехико (Мексика). В ближайшее время запланировано развертывание систем на базе iDEN в Перу, Венесуэле и Чили, а также расширение систем в Колумбии и Аргентине.

В Азии системы iDEN эксплуатируются в нескольких странах: более двух лет такие системы работают в Токио и Осаке (Япония), около года - в Сингапуре. Существуют системы в Китае, Южной Корее и на Филиппинах. Ведется строительство в Индонезии. На ближнем Востоке общенациональная сеть iDEN развернута в Израиле, начато строительство таких систем в Марокко и Иордании.

Каждая из перечисленных систем расчитана на обслуживание десятков тысяч абонентов.

Модульный принцип организации системы обеспечивает различные ее реализации. Например, первоначально сеть iDEN может быть развернута как чисто транкинговая система, а затем, по мере необходимости, к ней добавятся возможности мобильной телефонии, передачи текстовых сообщений и данных. По мнению разработчиков системы, сегодня iDEN - одна из немногих отработанных в коммерческой эксплуатации технологий, обеспечивающих предоставление всего комплекса услуг мобильной связи.

Андрей Александрович Денисов - менеджер компании Motorola по системе iDEN в регионе Восточной Европы и бывшего СССР. С ним можно связаться по адресу: [email protected] и факсу 785-0160

Транкинговые (транковые) системы являются видом систем подвижной связи, применяются в основном для обеспечения мобильной связи различными ведомствами (МВД, МЧС и др.). Под транкингом понимают метод свободного и равного доступа мобильных абонентов ко всем каналам сети связи. Транкинговая система радиосвязи представляет собой систему, обеспечивающую динамическое предоставление малого числа каналов связи большему числу абонентов (корреспондентов). В такой системе каждому абоненту может быть предоставлен любой из свободных каналов. Абонентская радиостанция может посылать запрос на сеанс связи на все базовые станции сети и при освобождении канала связи на любой из них, занимает этот канал на время переговоров. Такой способ связи позволяет обеспечить вероятность отказа в обслуживании гораздо ниже, чем в одноканальных или многоканальных радиотелефонных системах . Структурная схема транкинговой связи представлена на рис. 2.4.

Рисунок 2.4- Структурная схема транкинговой связи: РТ – радиотелефон сети транкинговой связи, МС- мобильная станция сети транкинговой связи, БПС – базовая передающая станция, ТК – транкинговый контроллер, ЦКС – центр коммутации связи, ТФОП – телефонная сеть общего пользования

Принципиальное отличие транкинговых систем от других систем мобильной связи заключается в том, что частотные каналы не закреплены за определенными абонентами. Система имеет свой определенный диапазон работы, который обеспечивается несколькими частотными каналами. Выбор свободного канала связи для сеанса осуществляется самой системой. По окончании сеанса связи этот же частотный канал может быть предоставлен другим абонентам системы.

Основной смысл транкингового способа организации связи заключается в том, что одновременные сеансы связи большого количества абонентов имеют определенную вероятность, поэтому количество рабочих частот можно подобрать таким, чтобы полная занятость каналов связи была не больше допустимой. Вышесказанное можно пояснить временной диаграммой работы 4-х канальной транкинговой системы (рис. 2.5), в которой занятость каждого из каналов связи составляет 40-60%. Как видно из диаграммы, занятость каждого канала связи в отдельности довольно высокая, а загрузка системы в целом низкая (10%). В случае занятости всех каналов связи новый запрос на обслуживание не теряется, а ставится в очередь до появления свободного канала.

1 канал
2 канал
3 канал
4 канал
система


Рисунок 2.5- Временная диаграмма работы системы транкинговой связи

В транкинговых системах связи выделение канала конкретному абоненту осуществляется двумя методами.

Первый метод предусматривает поиск свободного канала и подачу сигнала вызова мобильной абонентской станцией. Перед установлением связи мобильная станция осуществляет автоматический поиск свободного канала и на каждом определенном канале предпринимает попытку вхождения в связь с базовой станцией. При этом проявляется основной недостаток этого варианта, а именно, длительность цикла установления канала связи значительно превышает аналогичную длительность при фиксированном закреплении каналов за конкретными мобильными абонентами. Поэтому их использование эффективно при небольшом количестве каналов связи.

Второй метод построения транкинговой системы позволяет производить поиск свободного канала связи подсистемой управления базовой станции. Для решения этой задачи используется специальный канал управления базовой станции, через который обеспечиваются функции установления, обеспечения и прекращения связи.

Транкинговые системы предоставляют такие возможности, как автоматическое переключение установленного соединения на исправный канал при неисправности основного канала связи, оперативное переключение работающего канала связи на другую несущую частоту при появлении сильных помех.

Наиболее простой из существующих транкинговых систем является однозоновая аналоговая система стандарта Smar Trunk II, эксплуатируемая в диапазонах 146 – 174 МГц и 400 – 470 МГц. Базовая станция содержит один управляющий и пятнадцать рабочих каналов, которые обеспечивают работу до четырех тысяч абонентов.

Более современной аналоговой транкинговой системой является оборудование MPT 1327 с централизованным управлением (рис. 2.6).

В настоящее время имеет место тенденция перехода от аналоговых систем связи к цифровым. Полностью цифровой транкинговой системой является система стандарта TETRA.

Структура комплексов различных транкинговых систем примерно одинакова. Модульный принцип построения таких систем позволяет производить их наращивание до необходимой емкости.

Базовое оборудование каждого канала включает:

Дуплексный приемопередатчик (репитер);

Транкинговый контроллер;

Антенно-фидерное устройство.

Абонентские комплекты выполнены на базе популярных радиостанций Kenwood, Icom, Alinco, Motorola, Standard, Yaesu и др. с установленными в них специальными логическими платами, управляющими радиостанцией и реализующими определенные функции.

Радиостанции могут программироваться под функциональные задачи абонентов этой системы с помощью специального устройства – программатора.

Различные транкинговые системы обеспечивают аналогичный набор возможностей. Например, и однозоновые и многозоновые системы достигают увеличения радиуса действия связи. В однозоновой системе для этого требуется увеличение мощности передатчика базовой станции и применения более чувствительных антенн. В многозоновой системе тот же результат достигается использованием нескольких базовых станций пониженной мощностью передатчиков. Большое количество базовых станций в многозоновой системе позволяет снизить удаленность абонентской радиостанции от базовой, что повышает устойчивость связи. При перемещении абонента в соседнюю зону обеспечивается эстафетная передача сопровождения связи от одной базовой станции к другой, то есть установленное соединение не прерывается. Современные транкинговые системы обеспечивают возможность разделения общего числа абонентских радиостанций на группы (отряды), внутри которых осуществим индивидуальный и групповой вызов. Такую систему можно применить, например, в пределах муниципального образования, объединив в общую радиосеть несколько городских служб, в том числе подразделения местного гарнизона пожарной охраны, аварийно-спасательные формирования. При этом каждая служба может иметь вполне изолированную от других служб сеть связи, а взаимные вызовы между группами будут программно разрешены только конкретным радиостанциям.

В транкинговых системах реализуются следующие виды вызовов:

Индивидуальный вызов может быть адресован любой конкретной радиостанции, при этом каждой радиостанции присваивается определенный набор цифр;

Групповой вызов предназначен заранее определенной группе абонентов, имеющей свой идентификационный номер;

Общий вызов может быть направлен всем абонентам радиосети (группы);

Экстренный вызов позволяет прервать переговоры любых абонентов, ведущихся в радиосети;

Приоритетный вызов обеспечивает преимущество в соединении для главных радиостанций в соответствующей группе абонентов;

Посылка статуса позволяет радиостанция с алфавитно-цифровым дисплеем автоматически выбирать из памяти сообщения, соответствующие данному статусу и отражать его в виде строки текста;

Радиотелефонный вызов обеспечивает абоненту выход с радиостанции в телефонную сеть общего пользования, а также в сеть учрежденческой АТС, причем его подключение к таким сетям может происходить как по абонентской линии, так и по соединительной линии. Вызов абонента мобильной станции транкинговой системы из телефонной сети общего пользования осуществляется с помощью дополнительного номера;

Переадресация вызова позволяет перевести его с одной радиостанции на заранее определенную другую радиостанцию;

Прямой вызов обеспечивает переход радиостанции в симплексный режим работы для установления связи с другими радиостанциями сети без участия базовой станции.

Важными сервисными функциями современных транкинговых систем являются возможность передачи данных между радиостанциями и обеспечение беспроводного доступа к базам данных.

К дополнительным функциям этих систем следует отнести возможность передачи коротких буквенно-цифровых сообщений по каналу управления без занятия рабочего канала, а также обеспечение голосовой почты.

Существенным преимуществами транкинговой системы является индивидуальное программирование доступа к каждому виду возможностей, установка предельного времени разговора и приоритета абонента, наличие защиты от несанкционированного доступа в систему. Кроме этого, эти системы могут применяться в качестве транспортной среды для систем определения месторасположения подвижных объектов и систем телеметрии.

Широкие собственные возможности транкинговых систем, совместимость их работы с различными видами телефонных сетей позволяют эффективно использовать эти системы для обеспечения оперативной диспетчерской связи. Ограничивают их использование по сравнению с обычными (конвенциональными) радиостанциями более сложные процедуры эксплуатации.

Транкинговые сети радиосвязи находят широкое применение для решения задач управления РСЧС и гражданской обороны с использованием мобильной компоненты связи. В такие сети, как правило, включаются стационарные, автомобильные и переносные радиостанции начальников гражданской обороны субъектов РФ, административного центра, его городских районов, начальников органов управления ГОЧС субъекта Российской Федерации, административного центра и его районов, членов комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности (КЧСПБ), начальников служб гражданской обороны, начальников поисково-спасательных отрядов, дежурных служб административного центра. Взаимное использование транкинговых сетей связи основано на внесении в их базы данных обшей нумерации радиостанций должностных лиц и оперативных групп, выделенных для использования в качестве взаимодействующих.

Итак, при выборе коммерческого оператора транкинговой связи пользователям следует обращать внимание не только на наличие лицензии Минсвязи, но и на некоторые «паспортные» данные сети. В первую очередь к ним относятся поддерживаемые протоколы связи, которые условно можно разделить на открытые и «фирменные». Открытые протоколы позволяют любой компании организовывать выпуск базового и абонентского оборудования, а вот разработчик «фирменного» протокола является единственным производителем соответствующих устройств.

Открытость протокола обусловливает возникновение конкуренции изготовителей, благодаря чему повышается производительность инфраструктурного оборудования, а на рынке появляются системы, различающиеся по функциональности и стоимости. При наличии множества предложений абонентских устройств потребитель получает возможность выбора парка радиостанций в зависимости от требуемого соотношения цена/качество. Но главное — не происходит его пожизненной привязки к аппаратуре конкретной фирмы. Например, для применения в сети, организованной на базе открытого протокола типа MPT-1327 (существует множество его разновидностей), допускается задействовать технику большинства производителей радиооборудования. Напротив, с «фирменным» протоколом EDACS способны работать только устройства компании Ericsson, а стандарт ACTIONET «понимает» лишь техника Nokia.

Зона обслуживания

По принципам организации транкинговая связь аналогична сотовой. Каждая базовая станция «покрывает» определенную площадь. Зону покрытия (читай — зону компетенции) называют сайтом (в сотовой связи — сотом). Для обеспечения устойчивой связи во всех точках зоны обслуживания необходимо ее сплошное покрытие. Одна базовая станция физически не в состоянии выполнить это условие: в зоне обязательно найдутся «дыры», где радиостанция не сможет принимать сигнал. Например, не удастся организовать устойчивую связь вблизи некоторых железобетонных зданий, и, чтобы выйти из участка «радиотени», пользователю придется обогнуть строение или перекочевать на открытое пространство. Поэтому для сплошного покрытия необходимы как минимум три базовые станции.

Качество и надежность связи определяются не только количеством передатчиков, но и местами их размещения, высотой подвеса антенн, а также техническими параметрами базовых станций. Самый простой способ проверки качества связи, обеспечиваемой конкретным оператором, — взять у него на некоторое время абонентское оборудование для опробования в рабочих условиях.

Частота

В России для коммерческих систем транкинговой связи выделено несколько диапазонов частот: 136 — 174, 403 — 470, 470 — 520 и 800 МГц. Пользователю нужно помнить, что чем ниже частота, на которой работает оператор, тем больше дальность связи. С другой стороны, чем выше частота, тем меньше расстояние между базовыми станциями и лучше качество связи. Оптимальным вариантом может оказаться диапазон 478 — 486 МГц. Раньше этот участок частотного спектра был зарезервирован для 22-го ТВ-канала, но несколько лет назад его выставили на тендер, и теперь он распределен между пятью московскими операторами радиосвязи. Данный диапазон свободен от воздействия передатчиков пейджинговых компаний и других источников помех.

Сервисное и техническое обслуживание

Кто будет устанавливать и подключать абонентское оборудование? Если оператор предлагает пользователю самостоятельно смонтировать радиостанцию в автомобиле или направляет его с этой целью в другую компанию, то, скорее всего, он попросту решил сэкономить на оплате труда технического персонала. Тогда остается открытым вопрос о гарантиях сервисного обслуживания. Кроме того, кто знает, какими еще способами он пытается минимизировать свои расходы.

Цены у всех операторов примерно одинаковы. Они состоят из двух компонентов — разового платежа в момент подключения и ежемесячной абонентской платы. Разовый платеж складывается из цены радиостанции и необходимых аксессуаров (85-90% общей суммы), стоимости оформления разрешительных документов (2-3%), подключения к сети (4-6%) и монтажа радиостанции (4-6%).

Абонентское оборудование можно купить, взять в аренду, оформить в лизинг (с возможностью выкупа через год). Кроме того, некоторые компании выкупают старое оборудование по остаточной стоимости. Его цена идет в зачет разового платежа за новое подключение.

В Москве услуги транкинговой связи оказывают более 15 операторов. Немало компаний поставляют оборудование и занимаются монтажом локальных (ведомственных) сетей. Так что заказчик всегда может выбрать фирму, которая способна полностью удовлетворить его насущные потребности.

АМТ . Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай») . Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел» . Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» — единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк»
. Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг» . Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

Локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);
псевдотранкинговая сеть SmarTrunk II (с 1992 года);
многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк» . Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье — для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко» . Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных — в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

Операторы однозоновых транкинговых сетей

БТТ . В сети БТТ работает оборудование EF Johnson. Ее особенность заключается в том, что наряду с ретранслятором в ней используется сеть выносных приемников, связанных с базовой станцией выделенными проводными линиями. Абонентские терминалы характеризуются высокой надежностью.

«Софтнет» . Система «Софтнет» создавалась для обеспечения оперативно-диспетчерской связи. Именно этим был обусловлен выбор в качестве транкингового протокола LTR. Основными пользователями являются службы, нуждающиеся в едином управлении, такие как такси, доставка грузов, инкассация, службы безопасности и т. д. Достоинство данной сети — наличие оперативного канала связи с Московской городской службой спасения, предоставляемого абонентам бесплатно.

Псевдотранкинговые сети

MCS («Мобильные системы связи») . MCS является одной из первых транкинговых сетей, основанных на протоколе SmarTrunk-II, — она была развернута еще в 1994 году. Базовое оборудование DX-RADIO (США) размещено на 269-й и 325-й отметках Останкинской телебашни, что обеспечивает зону покрытия в радиусе 80-90 км. Вместе с «Центром-Телко» MCS входит в Городскую интегрированную систему радиотелефонной связи (ГИСРС), созданную по постановлению правительства Москвы.

В настоящее время компания «Мобильные системы связи» обеспечивает всех перевозчиков опасных грузов (топливо, масло, кислоты и т. п.) голосовой связью, датчиками контроля состояния и GPS. Единый диспетчерский пункт находится в ГУ ГОЧС. Предоставляются услуги полудуплексной и дуплексной связи, выхода в телефонную сеть, передачи данных и GPS. Имеется возможность локальной работы (без ретранслятора) на симплексных частотах по всей территории Москвы и Подмосковья. Не исключено бесплатное предоставление оборудования потенциальному заказчику для опробования в реальных условиях.

«Ланском» . Система подвижной радиотелефонной связи SmarTrunk-R эксплуатируется в Москве c 1995 года. Московский сегмент сети состоит из двух базовых станций общей емкостью 11 радиоканалов, работающих в диапазоне 430-450 МГц. За счет разноса базовых станций (БС №1 находится в районе м. «Алексеевская», а БС №2 — недалеко от м. «Беляево») обеспечивается бесперебойная связь в пределах МКАД и частично в ближнем Подмосковье.

С 1999 года компанией эксплуатируются системы подвижной радиотелефонной связи в Орле, Курске, Белгороде и Тамбове. Работа абонентов московской транкинговой сети в вышеперечисленных городах возможна при замене их терминалов в офисе фирмы «Ланском» на оборудование, совместимое с региональными транкинговыми системами. Аналогичная возможность предоставляется и абонентам региональных сетей.

«Эверлинк» . Однозоновая пятиканальная система псевдотранкинговой связи, базирующаяся на протоколе E-trunk, обеспечивает устойчивый прием на портативные радиостанции в пределах Москвы и на мобильные — в радиусе до 30 км от МКАД. Услуги телефонии не предоставляются. Лицензия распространяется на Москву и Московскую область, что позволяет предлагать потребителям услуги прямого канала (связь с портативных радиостанций до 2 км в условиях любой застройки).


Павел Дмитриев, Сети, №10/2002

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Федеральное агентство связи Государственное общеобразовательное учреждение Высшего профессионального обучения “Сибирский государственный университет телекоммуникаций и информатики” (филиал)

Хабаровский институт инфокоммуникаций Факультет заочного обучения

Курсовой проект

по дисциплине: Системы радиосвязи с подвижными объектами

на тему: Проектирование транкинговой сети связи

Выполнила: студентка 4 курса ФЗО

специальности МТС (уск.)

Малышева В.В.

Хабаровск 2010

Введение

3.4 Определение числа РЧК при наличии нескольких зон радиопокрытия с выходом на АТС через одну базовую станцию

Литература

транкинговая сеть радиосвязь

Задан тип застройки района обслуживания. Определить рабочий диапазон частот исходя из типа застройки.

1. Определить среднее значение размеров зон обслуживания исходя из типа застройки района, мощности радиопередатчика, высоты подвеса антенн и диапазона рабочих частот.

2. Произвести частотное планирование сети.

3.1 Разработать план размещения базовых станций с учётом топологии местности.

3.2 Определение каналов для каждой БС.

3.3 Расчёт зоны обслуживания и зоны помех для каждой БС.

4. Расчёт дальности радиосвязи.

5. Составить схему организации связи.

6. Составить структурную схему сети исходя из количества БС.

7. Составить структурную схему БС, определив тип базового оборудования.

8. Составить структурную схему однозоновой или многозоновой транкинговой системы.

9. Составить структурную схему управления в транкинговой системе.

Исходные данные для выполнения курсового проекта (вариант № 6):

Тип застройки: среднеэтажная застройка

Вид объекта: мобильные объекты

Мощность передатчика: Рпер = 30 Вт

Чувствительность приёмника: Ес = 0,5 мкВ

Высота подвеса антенны: h = 25м

Количество пользователей: 325

Перепады высот: Hmax = 250м, Hmin = 50м

Коэффициент усиления антенны: G = 7 дБ

Коэффициент тяготения: G = 0,35

Затухание в АФУ: 10 дБ

Среднее число вызовов: С = 4,4

Средняя продолжительность разговора: tср = 28 сек

Плотность транспорта: V = 7 маш/км2

Длина фидера передатчика БС: lперБС = 17 м

Длина фидера передатчика АС: lперАС = 1,1 м

Потери в фидере: ДРф = 2,5 дБ

Потери в комбайнере: ДРк = 4 Дб

Также исходные данные приведены в таблице 1.

Таблица 1

Параметры

№ базовой станции

Введение

В настоящее время существует целый ряд систем сухопутной подвижной радиосвязи:

Системы персонального радиовызова (пейджинг);

Системы диспетчерской (оперативной) радиосвязи;

Транкинговые системы радиосвязи;

Системы сотовой телефонной радиосвязи.

Транкинговые системы радиосвязи стали наиболее успешной реализацией развития систем оперативной мобильной связи, которые обладают высокой эффективностью при интенсивном обмене оперативной информацией для большого количества абонентов, которые могут объединяться в группы по оперативно-функциональным признакам. Предоставляемый транкинговыми системами набор сервисных услуг весьма широк и практически включает в себя все их многообразие: от передачи данных до радиотелефонии и от простого оповещения до автоматического определения местоположения подвижных объектов.

Транкинговые системы радиосвязи - это многоканальные системы, в которых абоненту по его требованию автоматически по заданному алгоритму предоставляется радиоканал и другие ресурсы системы, чем обеспечивается высокая эффективность использования частотного ресурса.

По принципу организации радиоканала все транкинговые системы можно разделить на три условные группы:

Аналоговые - системы радиосвязи с селективным вызовом (DTMF, Select 5 и т.п.);

Аналого-цифровые - системы, в которых передача служебной информации при установлении соединения осуществляется в цифровом, а передача в аналоговом режиме (SmarTrunk II, MPT 1327, LTR, EDACS);

Цифровые - EDACS ProtoCall, TETRA, Astro.

По наличию в системе канала управления:

Системы, имеющие канал управления на момент установления соединения - SmarTrank II, Selekt 5 и др.;

Системы с постоянным каналом управления, формируемым различными способами - TETRA, MPT 1327, LTR и др.

По способу предоставления канала связи:

Постоянный на весь сеанс связи - SmarTrank II, MPT 1327 и др.;

Предоставляемый только для передачи сообщения и меняется в течение сеанса связи - EDACS, TETRA.

По принципу организации управления базовым оборудованием: децентрализованный - SmarTrank II и др.; централизованный - МРТ 1327, EDACS, TETRA и др. Кроме того, все протоколы транкинговых систем можно разделить на 2 класса:

1. Открытые протоколы (MPT 1327, TETRA);

2. "Фирменные" протоколы (LTR, SmartNet, SmartZone, EDACS, ESAS и др.).

Открытые протоколы доступны для любого производителя. Эти протоколы рекомендованы для использования во многих странах. Системы с такими протоколами производятся многими фирмами, оборудование ввиду массовости производства и высокой конкуренции, как правило, дешевле, чем в специализированных системах.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrank II, MPT 1327, LTR, EDACS и SmartZone. Поэтому в курсовом проекте, при выборе типового оборудования, за основу принят протокол МРТ 1327.

Протокол МРТ 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов. Важнейшими достоинствами протокола МРТ 1327 являются:

Возможность построения многозоновых систем национального масштаба с большим количеством базовых станций, что позволяет «покрывать связью» значительные территории;

Широкий выбор абонентского и базового оборудования МРТ 1327: его выпускают многие фирмы - Motorola, Tait Electronics, Fylde Microsystems, Bosch, Philips, Nokia, Rohde & Schwarz и др.;

Протокол не привязан к определённым частотам, что позволяет выбирать их в зависимости от наличия плана частот и соответствующего разрешения ГКРЧ;

Стандартизация компонентов системы позволяет упростить и удешевить эксплуатацию, обслуживание, развитие и объединение сетей в более крупные системы;

Обеспечивается возможность экономичной передачи коротких сообщений;

Протоколы позволяют строить эффективные сети сбора информации от датчиков состояний и аварий;

Гарантированная модернизация и техобслуживание;

Осуществление плавного перехода на сигнальные протоколы нового поколения (от аналоговых систем к цифровым системам стандарта TETRA).

Возможности, предоставляемые абонентам транкинговых систем протокола МРТ 1327:

Индивидуальный вызов мобильной радиостанции;

Вещательный вызов, при котором вызываемые абоненты могут только слушать информацию;

Вызов группы абонентов;

Приоритетный и аварийный вызовы;

Вложенный вызов, позволяющий включать других абонентов в существующий разговор;

Соединение с абонентами городской и ведомственной телефонных сетей;

Переадресация пользователем радиостанции входящих вызовов на другого абонента;

Постановка вызовов на очередь;

Защита от несанкционированного доступа.

Транкинговые системы стандарта МРТ 1327 поддерживают режим обмена данными, который обеспечивает передачу: статусных сообщений; коротких до 25 символов; расширенных до 88 символов; сообщений неограниченной длины.

1. Определение рабочего диапазона частот

В данном курсовом проекте задан тип застройки средне этажный, следовательно, можно предположить, что тип местности городской. Для городских районов оптимальным являются диапазоны 300, 450 и 900 МГц. Примем диапазон равный 300 МГц.

2. Определение среднего значения размеров зон обслуживания

Среднее значение размеров зон обслуживания зависит от мощности радиопередатчика, высоты подвеса антенн, типа застройки, района обслуживания, типа абонентской станции и диапазона рабочих частот.

Для среднеэтажной застройки значение ресурсов зон обслуживания мобильных объектов равно 15-30км.

3. Частотное планирование сети

Частотное планирование сети производится на основании расчета зоны уверенной связи для заданного качества приема. При этом надо использовать принцип неравномерного распределения радиочастотного ресурса по территории пропорциональной концентрации абонентов: применять в локальных сетях транкинговой радиосвязи малоканальное оборудование, обеспечивающего обслуживание от 100-200 до 1500-2000 абонентов.

3.1 Разработка плана размещения базовых станций

При разработке плана размещения БС руководствуются следующим: приблизительный радиус зоны обслуживания БС для 300 МГц - 10-15км. Исходя из этого, производится предварительное размещение БС с учетом полного или частичного покрытия зоны обслуживания и использование одно - или многозоновой систем. Определение числа ретрансляторов для БС производится исходя из распределения абонентской нагрузки в пределах зоны обслуживания из расчета 80-100 абонентов на канал.

3.2 Определение числа радиочастотных каналов при одной зоне обслуживания без выхода на АТС

При расчете числа РЧК предполагается, что весь трафик на сети создается только радио абонентами и полностью распределяется между ними, т.е. тяготение радио абонентов к абонентам АТС. Для определения емкости пучка РЧК требуется знать:

N - число радио абонентов;

Счнн - среднее число вызовов в ЧНН, создаваемых одним радио абонентом;

Tср - средняя продолжительность разговора.

где - нагрузка, поступающая от одного абонента в ЧНН, равная:

Зная, что среднее число вызовов в ЧНН, создаваемых одним радиоабонентом, равно 4,4, а средняя продолжительность разговора:

tср = 28 сек = 0,007778 часа,

определяем нагрузку, поступающую от одного абонента в ЧНН:

При постоянной блокировки вызова:

при заданных N = 325,

по графику (рисунка 1) определяем, что требуемое число радиочастотных каналов:

V = 13 каналов.

А удельная нагрузка, поступающая от 250 абонентов, равна:

3.3 Определение числа РЧК при одной зоне обслуживания с выходом на АТС

В некоторых случаях радио абоненты транкинговой сети могут иметь выход на АТС. В этом случае часть поступающей нагрузки составляет нагрузка между системой и АТС телефонной сети. На рисунке 2 представлена схема обслуживания базовой станции одной зоны с АТС.

По заданию задан коэффициент тяготения:

абонентов сети к АТС. Определим общую нагрузку, создаваемую всеми абонентами, с учетом коэффициента тяготения по следующей формуле:

По графику (рисунок 3) для вычисленного значения:

Ае = 4 Эрл,

найдем емкость пучка каналов V1 для обслуживания нагрузки между системой и АТС.

Емкость пучка каналов V1 = 11 каналов.

3.4 Определение числа РЧК при наличии нескольких зон радио покрытия с выходом на АТС через одну базовую станцию

На рисунке 4 представлена схема при наличии нескольких зон радио покрытия с выходом на одну базовую станцию. Значения, N и G (нагрузка, поступающая от одного абонента в ЧНН, число радио абонентов и коэффициент тяготения) для БС-1, БС-2, БС-3 и БС-4 указаны в таблице 1.

При наличии нескольких базовых станций (БС), одна из них будет главной, которая имеет выход на АТС по кабельным линиям связи. Остальные БС связаны с главной по каналам радиорелейных линий связи. Каждая БСi имеет Ni - количество радио абонентов, причем каждый из них создает нагрузку i. Для каждой БСi задан коэффициент тяготения к АТС - Gi. Трафик каждой БСi поступает к АТС через главную БС. Необходимо рассчитать число радиоканалов:

В каждой зоне VБС;

Между главной БС и АТС - V1;

Радиорелейной системы, связывающей БСi с главной - Vрр.

Рассчитаем необходимые значения по следующему алгоритму:

1. Определим общую поступающую нагрузку для каждой БСi по формуле:

2. По графику (рисунок 1) определяем число РЧК по заданным значениям i и Ni:

3. Рассчитаем поступающую нагрузку Ае между каждой БСi и АТС с учетом коэффициента тяготения:

4. Определим общую поступающую нагрузку от БС к АТС:

5. По графику (рисунок 3) определяем емкость пучка каналов V1 между главной БС и АТС по найденному значению Ае общ.: V1 = 9 каналов.

6. Определим по расчетным нагрузкам Аei для каждой БСi число радиоканалов радиорелейной системы Vрр, связывающей каждую БС с главной. Определение Vpp производиться по графической зависимости, представленной на рисунке 5.

4. Расчет зоны обслуживания базовой станции

Для определения зоны обслуживания БС произведем следующие расчеты:

1. Определим эффективно излучаемую мощность передатчика БС:

где РБС - мощность передатчика БС, равная в данном курсовом проекте:

ДРф - потери в фидере, равные 2,5 дБ;

ДРк - потери в комбайнере, равные 4 дБ;

Gо БС - коэффициент усиления антенны БС, равный 7 дБ.

Подставив значения, получаем:

2. Определим параметр Дh, характеризующий неравномерности рельефа местности. Ориентировочно Дh может быть определено по разности ДH максимальной и минимальной высотных отметок местности:

Зная, что Нmax = 250м, а Hmin = 50м, производим расчет:

3. Определим эффективную высоту передающей антенны БС:

где hБС - высота подвеса антенны БС относительно уровня моря (hБС = 25м);

средний уровень местности относительно уровня моря по высотам hi на удалении 1000+250i метров от БС, равный 1,5м.

4. Определим медианное значение минимальной напряженности поля сигнала для абонентской станции от БС:

где - напряженность поля, соответствующая чувствительности приемника АС, дБмкВ/м;

Uсигн - чувствительность приемника, мкВ.

Действующая длина приемной антенны, м.

GАС - коэффициент усиления антенны АС;

Rвх - входное сопротивление приемника, примем Rвх = 50 Ом;

Ко - коэффициент надежности логарифмического распределения зависящий от требуемой надежности связи по времени и месту (Ко = 1,64);

где и - стандартные отклонения сигнала по времени и месту:

ДЕ и Дh - поправка на неравномерность рельефа местности:

Подставляя полученные значения, получаем:

5. Расчет помех в пункте размещения базовой станции

Расчет среднего эффективного значения напряженности поля помех в пункте приемной антенны БС производится на частоте f МГц при заданной плотности транспорта в зоне приема V.

На рисунке 6 приведены характеристики радиопомех, наблюдаемые в антеннах БС. При оценке помех определялась зона восприятия помех приемной антенной БС размером в 1 км 2 , помехи разделялись на три группы в зависимости от плотности транспорта в пределах зоны для каждого момента времени:

Плотность транспорта в зоне высоких уровней помех (Н) VН = 100 маш./км 2 ;

В зоне средних (М) плотность транспорта VМ = 10 маш./км 2 ;

В зоне низких уровней помех (L) плотность транспорта VL = 1 маш./км 2 .

В данном курсовом проекте помеха в зависимости от плотности транспорта находится в зоне средних уровней, т.к. VM = 7 маш./км 2

Принимаем среднюю частоту повторения импульсов помех:

Fu = 3650 имп/п,

которая слабо зависит от рабочей частоты; среднеквадратичное отклонение пиковых значений помех принимаем равным:

По рисунку 6 для заданного значения V и f находим:

Еи (Еи = 22 дБ).

Затем по следующей формуле найдем среднее эффективное значение напряженности помех:

где Пиз - эффективная ширина полосы пропускания типового измерителя помех, принимаем:

Ппр - эффективная ширина полосы пропускания приемника, принимаем.

С учетом собственных шумов аппаратуры среднее эффективное значение напряженности поля суммарных помех:

где GН - номинальная чувствительность приемника, мкВ;

Затухание в антенном тракте приемника;

Длина фидера;

(S/N)пр.вх - номинальное отношение сигнал/шум, принимаем равным 10-12;

hд.пр - действующая высота антенны:

6. Расчет дальности радиосвязи

Определим напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи по формуле:

где Ес - напряженность поля сигнала, необходимая для получения заданных показателей качества:

где ЕП.ЭФ - среднее эффективное значение напряженности поля суммарных помех, равное 9,43 дБ

R0 = 5-10 дБ - защитное отношение для получения заданного качества приема

С = 8 дБ - значение защитного коэффициента, необходимого для обеспечения требуемого защитного отношения

Вр.н. - поправка, учитывающая отличие номинальной мощности передатчика от мощности 1 кВт:

где Рн - номинальная мощность передатчика, равная 30 Вт. Поэтому:

Вф - затухание в резонаторах, мостовых фильтрах и антеннах разделителях принимаем равным 3 дБ;

Вh2 - поправка, учитывающая высоту приемной антенны АС, дБ:

Для h2 = 3м: ;

Врел - поправка, учитывающая рельеф местности, отличающийся от Дh=50 м, дБ.

Дh определяется по формуле:

где Hmax и Hmin - максимальные и минимальные высотные отметки местности на трассе распространения в выбранном направлении, равные 200 м и 50м.

Следовательно,

По графику (рисунок 7) определяем Врел (Врел = 9 дБ)

Ду - усиление приемной и передающей антенны, равное 7 дБ;

Подставляя полученные значения, определяем напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи:

Определив напряженность поля, по графику (рисунок 8) определяем ожидаемую дальность связи - 40 км.

7. Структурная схема базовой станции

На рисунке 9 представлен общий принцип построения базовой станции.

7.1 Структурная схема однозоновой транкинговой системы

Структура однозоновой транкинговой системы представлена на рисунке 10.

Устройство объединения радиосигналов служит для объединения и разветвления сигналов, поступающих от передатчика и приемника ретранслятора. Ретранслятор - это набор приемопередатчиков, обслуживающих одну пару несущих частот. Один ретранслятор может обеспечить два или четыре канала трафика. Четыре канала для обслуживания 50-100 радиоканалов; 8 каналов - 200-500AC; 16 каналов - до 2000 радио абонентов. Зона действия БС на частоте 160 МГц - 40км; на частоте 300 МГц - 25-30км; на частоте 300 МГц - 20км.

Коммутатор обслуживает весь трафик системы. Устройство управления обеспечивает взаимодействие всех узлов БС. Оно обрабатывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в базы данных повременной оплаты.

Терминал технического обслуживания и эксплуатации предназначен для контроля за состоянием системы, проведение диагностики неисправностей, внесение изменений в базу данных абонентов.

В состав центральной станции зоны обслуживания входит несколько приемопередатчиков, количество которых зависит от количества каналов и количества обслуживаемых абонентов.

Приемопередатчик каждого канала контролируется контроллером. Максимальное количество каналов на центральной станции до 24. Одним каналом можно обслужить до 30-50 абонентов. Для взаимодействия всех контроллеров центральной станции используется блок сопряжения, который по общей шине управления соединен со всеми контроллерами, обеспечивая, таким образом, управление, учет и тарификацию соединений.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrunk II, MPT 1327, LTR и SmartZone. Протокол MPT 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов.

Типовая спецификация оборудования в диапазоне 450 МГц для мобильных объектов:

Базовое оборудование: Количество:

Процессор регионального управления Т1530 1;

Пульт оператора в составе: компьютер и принтер;

Программное обеспечение пульта оператора Т1504 1;

Блок коммутации Т1560 1;

Канальная интерфейсная плата Т1560-02 3;

Интерфейсная плата Т1560-03 на одну 2-х проводную линию 1;

Ретранслятор Т850 (50Вт, 100% реж. работы) 4;

Контроллер транкингового канала Т1510 4;

Системный интерфейс Т1520 1;

Модем Т902-15 2;

Шкаф 3 8RU 2.

Антенно-фидерное оборудование: Количество:

Комбайнер M101-450-TRM 1;

Дуплексный фильтр TMND-4516 1;

Приемная распределительная панель TWR8/16-450 1;

Антенна стационарная ANT 450 D6 - 9 (ус. 6-9 дБ) 2;

Кабель коаксиальный РК 50-7-58 70м;

Разъем для РК 50-7-58 2;

Грозоразрядник 1;

Переходные кабели 8.

Транкинговые радиостанции фирмы TAIT ELECTRONICS LTD:

Носимые Т3035;

Мобильные Т2050.

Небольшие многозоновые системы с централизованным управлением и подключением к АТС наиболее целесообразно строить на базе системы TAITNET фирмы TAIT Electronics.

Система TAITNET состоит из центра регионального управления, терминала управления системой, базовых станций и абонентского оборудования. Типовая функциональная схема четырехзоновой транкинговой системы связи TAITNET представлена на блок-схеме (рисунок 11).

7.2 Структурная схема многозоновой транкинговой системы

Система состоит из центра регионального управления, терминала управления системой, базовых станций, абонентского оборудования. В состав центра регионального управления входят: региональный контроллер, коммутатор и интерфейсные платы.

Региональный контроллер (процессор регионального управления Т1530), который осуществляет объединение всех контроллеров Т1510 базовых станций в единую многоканальную многозоновую систему. Этот контроллер может управлять системой, состоящей из 10 зон по 24 канала в каждой зоне. Он собирает информацию от всех подключенных БС и передает ее на терминал управления системой.

Терминал управления системой представляет собой IBM-совместимый персональный компьютер и работает с использованием специального программного обеспечения Т1504 фирмы TAIT Electronics.

Коммутатор Т1560 состоит из коммутационной матрицы и интерфейсных плат. Он обеспечивает коммутацию аудиоканалов при межзоновых соединениях и аудиоканалов с телефонными линиями.

Интерфейсные платы Т1560-03 обеспечивают стык с двухпроводными телефонными абонентскими линиями. Платы Т1560-02 обеспечивают соединение коммутатора Т1560 с трафиковыми каналами БС по выделенным четырех проводным линиям.

Если оператор системы TAITNET располагает абонентской емкостью на АТС, то возможна организация единой нумерации абонентов телефонной сети и абонентов транкинговой системы. Организацию общей нумерации обеспечивает контроллер соединительных линий.

Оборудование базовой станции состоит из антенно-фидерного оборудования, приемопередатчиков Т850, канальных контроллеров Т1510 и системного интерфейса Т1520.

Контроллеры БС поддерживают сеанс связи и взаимодействуют с системным интерфейсом. Системный интерфейс выполняет проверку и учет соединений, выдает информацию о состоянии системы и осуществляет обмен данными с контроллерами БС. Связь с процессором регионального управления обеспечивается по выделенным двух проводным линиям через модем. Для связи абонентов БС с региональным узлом используются 4-х проводные аудиолинии. Контроль и управление базовыми станциями производится региональным контроллером.

В каждой БЗ также имеется системный контроллер. Связь между системными контроллерами базовых станций осуществляется с помощью модемов. Интерфейсные платы в центре регионального управления осуществляют возможность выхода в телефонную сеть общего пользования.

Литература

1. Методические указания и задание на курсовой проект по предмету "Системы связи с подвижными объектами"

2. Конспект лекций по предмету "Системы связи с подвижными объектами"

3. Каталог "Системы и средства радиосвязи", 1998

4. Каталог оборудования фирмы Радиома, 1999

5. Сводная таблица характеристик транкинговых радиостанций МРТ-1327

Размещено на Allbest.ru

Подобные документы

    Определение параметров сотовой сети для данного города и мощности передатчика базовой станции. Выявление количества частотных каналов, которое используется для обслуживания абонентов в одном секторе одной соты. Расчет допустимой телефонной нагрузки.

    курсовая работа , добавлен 04.04.2014

    Выбор частотных каналов. Расчет числа сот в сети и максимального удаления в соте абонентской станции от базовой станции. Расчет потерь на трассе прохождения сигнала и определение мощности передатчиков. Расчет надежности проектируемой сети сотовой связи.

    курсовая работа , добавлен 20.01.2016

    Выбор трассы прокладки волоконно-оптической линии связи. Расчет необходимого числа каналов. Определение числа оптических волокон в оптическом кабеле, выбор его типа и параметров. Структурная схема организации связи. Составление сметы на строительство.

    курсовая работа , добавлен 16.07.2013

    Проектирование и структурная схема городской телефонной сети, использование унифицированного двухстороннего коммутационного элемента. Расчёт интенсивности нагрузки, числа каналов и терминальных модулей. Определение числа плоскостей главной ступени.

    курсовая работа , добавлен 19.06.2012

    Организация поездной радиосвязи. Расчет дальности действия радиосвязи на перегоне и на станции. Радиоаппаратура и диапазон частот. Выбор и анализ направляющих линий. Организация станционной радиосвязи. Организация громкоговорящей связи на станции.

    курсовая работа , добавлен 28.01.2013

    Определение нагрузки, поступающей на станцию системы массового обслуживания. Определение необходимого числа каналов для полнодоступной системы при требуемом уровне потерь. Моделирование в среде GPSS World СМО с потерями от требуемого числа каналов.

    курсовая работа , добавлен 15.02.2016

    Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа , добавлен 16.12.2012

    Проектирование принципиальных электрических схем канала радиосвязи. Расчёт кривой наземного затухания напряженности поля радиоволны при радиосвязи дежурного по станции с машинистом поезда. Разработка синтезатора частоты, обслуживающего радиоканал.

    курсовая работа , добавлен 12.02.2013

    Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.

    курсовая работа , добавлен 05.03.2011

    Расчет требуемого отношения сигнал-шум на выходе радиолокационной станции. Определение значения множителя Земли и дальности прямой видимости цели. Расчет значения коэффициента подавления мешающих отражений. Действие станции на фоне пассивных помех.

Альтернативой сотовым сетям могут быть транкинговые коммуникационные системы. Данные технологические решения активно используются по всему миру. Многие российские организации, как частные, так и государственные, отдают предпочтение как раз таки транкинговой связи. В чем ее специфика? Каковы преимущества соответствующих решений перед иными популярными коммуникационными стандартами, внедряемыми в РФ и за рубежом?

Что представляют собой транкинговые системы?

Транкинговая связь — разновидность наземной подвижной инфраструктуры коммуникаций радиально-зонового типа. Функционирует за счет ретрансляторов между абонентами в автоматическом режиме. Кроме того, термин «транкинговая связь» соответствует способу доступа пользователей к выделенной совокупности каналов, в рамках которой свободный ресурс выделяется для конкретного абонента на период подключения.

Транкинговая инфраструктура чаще всего представлена:

Наземным оборудованием;

Абонентскими станциями.

В состав первого элемента транкинговой инфраструктуры входят базовые станции и контроллеры. Современные виды оборудования соответствующего типа позволяют обеспечивать пользование связью в рамках индивидуальных, групповых или же широковещательных типов вызова. В некоторых случаях возможно подключение одной абонентской станции к другой без обращения к ресурсам базовой станции.

Рассматриваемый тип коммуникаций применим для решения широкого спектра задач государственных силовых структур. Важно при этом, чтобы соблюдались технические требования СОРМ в системах транкинговой связи. Таковые, как правило, закреплены в ведомственных правовых актах.

Принципы работы транкинговой связи

Рассмотрим основные принципы построения транкинговых систем связи.

Соответствующая технология предполагает использование ультракоротких волн, как и сотовая связь. Для увеличения дальности сигналов в транкинговой инфраструктуре задействуются ретрансляторы. Выше мы отметили, что в ее составе присутствуют базовые станции. Она может быть представлена как одним, так и несколькими объектами — в первом случае сеть будет классифицирована как однозоновая, во втором — как многозоновая.

Первые сети транкинговой связи позволяли организовывать взаимодействие нескольких сотен абонентов. Сейчас за счет включения в нужного количества базовых станций можно обеспечивать связь фактически между любым числом абонентов. Оператор транкинговой связи может распределять приоритеты вызовов, обеспечивать коммуникации в разных режимах — симплексном, дуплексном. Современная инфраструктура соответствующего типа может обеспечивать защиту каналов от несанкционированного доступа, прослушивания, позволяет выводить устройства в интернет. Транкинговые системы связи бывают цифровыми и аналоговыми.

Кто использует транкинговые системы?

Транкинговые системы, которые являются, как мы отметили выше, радиально-зоновыми элементами сетевой инфраструктуры и функционирующие в ультра-коротком диапазоне, ориентированы главным образом на корпоративных заказчиков, на силовые ведомства. В то время как основные клиенты сотовых операторов — частные лица. Транкинг более всего подходит для организации оперативной связи в рамках групп специалистов — например, при несении дежурства, выполнении заданий, оказании помощи другим людям, если речь идет об экстренных службах.

Выше мы отметили, что рассматриваемый востребован государственными службами. Фактически соответствующие структуры являются основными пользователями данной разновидности связи. Это обусловлено рядом принципиальных отличий транкинговых коммуникаций, в частности, от сотовых — привычных обычным гражданам. А именно:

Возможностью практически моментального — в пределах 0,5 секунды, подключения одного абонента к другому;

Определением приоритетных ;

Возможностью связи абонентов друг с другом без использования базовой станции;

Наличием ресурсов для конфигурирования сети в соответствии с задачами пользователя;

Возможностью организации групповых, широковещательных, аварийных, задержанных вызовов;

Наличием ресурсов для шифрования связи, возможностью прослушивания разговоров сторонним абонентом.

Указанные опции не характерны для обычной сотовой связи. Некоторой схожестью с транкинговыми технологиями обладает мобильный стандарт Push To Talk. Но по многим критериям он не подходит для государственных служб.

Чем сотовая связь лучше транкинговой? Прежде всего возможностью передавать файловые данные с высокой скоростью — современные стандарты 4G позволяют достигать показателя в десятки мегабит в секунду. Однако стоит отметить, что представленная в стандарте TETRA транкинговая связь (если говорить о технологии в версии R2), в принципе, также способна к высокоскоростной передаче данных.

TETRA — это цифровая технология рассматриваемых коммуникаций. Но стоит отметить, что транкинговая связь «ТЕТРА» в версии RI несколько уступает стандарту R2 — в частности, по скорости передачи данных. Хотя по основным опциям возможности обеих технологий в целом сопоставимы. Полезно будет сопоставить с ними другие распространенные стандарты транкинговой связи.

Основные стандарты транкинговых коммуникаций

К самым распространенным технологиям можно отнести, прежде всего, те, что классифицируются как цифровые. Аналоговая транкинговая инфраструктура сейчас не слишком востребована. Наиболее популярные стандарты связи рассматриваемого типа:

Рассмотрим особенности каждого из них подробнее.

Стандарт EDACS

Стандарт EDACS был разработан известной шведской корпорацией Ericsson. Классифицируется он как закрытый. Данный стандарт предполагает передачу данных по каналам с использованием широкого спектра частот (но в пределах 870 МГц). В рамках одной транкинговой сети он позволяет обеспечить связь между 16 тыс. абонентов.

Рассматриваемый стандарт в достаточной мере надежный, но считается устаревшим, поскольку фактически предполагает передачу аналоговых сигналов, хоть и с использованием цифровой инфраструктуры. Кроме того, он, как мы отметили выше, закрытый. Оборудование транкинговой связи, адаптированное для него, может выпускать только фирма-разработчик.

Стандарт iDEN

Данный стандарт — также закрытый. Разработан он корпорацией Motorola. Наибольшую востребованность имеет в Северной Америке, некоторых государствах Южной Америки, в Азии. Рассматриваемая технология позволяет реализовать в рамках транкинговой сети привычные абонентам сотовых операторов сервисы — например, отправку SMS, факсов, связь с интернетом.

В России соответствующий стандарт не получил распространения, как считают эксперты, это связано с тем, что используемые в рамках него частоты — 805-821 МГц или же 855-866 МГц не слишком оптимальны с точки зрения решения задач основными пользователями транкинговых систем связи, к которым, как мы отметили выше, относятся государственные службы. К слову, фирма Motorola выпустила ряд решений, совместимых одновременно как с транкинговыми, так и с сотовыми технологиями связи.

Tetrapol PAS

Данный коммуникационный стандарт был разработан во Франции, компанией Matra Communication по заказу французских спецслужб. Характеризуется задействованием довольно низких частот — от 70 до 520 МГЦ, использование которых не слишком популярно в других странах. Однако, в России предпринимались попытки тестирования соответствующего стандарта транкинговых коммуникаций.

TETRA

Выше мы рассмотрели некоторые аспекты технологии TETRA. Изучим ее специфику подробнее.

Транкинговая связь «ТЕТРА» - это, в свою очередь, открытый стандарт коммуникаций, разработанный европейскими специалистами. За пределами Европы долгое время был не слишком распространен, однако, теперь используется многими российскими, азиатскими компаниями, африканскими и южноамериканскими фирмами.

Открытость рассматриваемого стандарта позволяет обеспечивать совместимость с ним разным производителям оборудования для транкинговой связи. Компании, планирующей выпускать соответствующий девайсов, необходимо, вместе с тем, стать членом организации MoU TETRA, тем самым подтвердив свою готовность содействовать развитию данной технологии. Многие современные бренды, производящие оборудование для транкинговых сетей, вступили в данную организацию.

Выше мы отметили, что стандарт R2 позволяет осуществлять передачу данных на высокой скорости. Это возможно, в частности, благодаря тому, что транкинговая связь по соответствующей технологии объединяется с широкополосными сотовыми каналами.

В России стандарт «ТЕТРА» известен под брендом «Тетрарус». Так, он использовался для выстраивания телекоммуникационной инфраструктуры во время Олимпиады в Сочи.

APCO 25

Еще одна популярная технология транкинговой связи — APCO 25. Разработана Ассоциацией коммуникационных служб структур безопасности. Штаб-квартиры данной структуры располагаются в США, в штатах Вирджиния и Флорида.

Преимущество данного стандарта — в возможности обеспечения связи по каналам с высоким уровнем защищенности, достигаемым за счет применения различных технологий шифрования. Еще одна примечательная особенность APCO в том, что он позволяет задействовать широкий диапазон частот — от 139 до 869 МГц. Высокий уровень защищенности, который обеспечивают соответствующие транкинговые системы связи, предопределяет достаточно высокую его востребованность у российских спецслужб.

Стоит отметить, что в РФ распространены собственные стандарты коммуникаций, функционирующих по транкинговым принципам. Их использование обусловлено необходимостью создания исключительно надежной и защищенной инфраструктуры связи. При задействовании подобного подхода применяется транкинговая система связи в вооруженных силахРФ. Многие из технологий связи, используемых в российской армии, разработаны специально для нужд обороны и не рассчитаны на массовое примнение.

Основные поставщики услуг транкинговой связи в РФ

Рассмотрим то, какие бренды в РФ поставляют услуги с использованием технологий, о которых идет речь.

Известный российский оператор транкинговой связи — компания «РадиоТел». Обладает инфраструктурой, позволяющей объединять с городскими станциями. Поставляет решения для экстренных служб, МЧС, частных заказчиков.

Один из крупнейших транкинговых операторов РФ — компания «Тетрасвязь». Специализируется на внедрении решений в рамках стандарта TETRA в самых разных регионах России. Поставляет широкий спектр сервисов — от проектирования транкинговой сети до ввода ее в эксплуатацию.

Другой крупный бренд на рынке транкинговых решений - «Регионтранк». Фирма оказывает услуги в основном в Москве и области, а также в некоторых регионах Центра РФ. Бренд позиционирует себя как поставщик решений, адаптированных под спецификацию бизнес-процессов конкретных организаций-заказчиков.

Еще одна известная компания, которая ведет деятельность в сегменте транкинговых технологий - «Центр-Телко». Можно отметить, что в ее инфраструктуре применены решения, функционирующие в рамках стандарта EDACS.

Перспективы развития транкинговых решений в РФ

Итак, мы изучили, что такое транкинговая связь, принцип построения коммуникаций с использованием ее стандартов. Посмотрим теперь, что говорят эксперты относительно перспектив развития соответствующих решений в России. Данная проблематика является темой для крупнейших конференций с участием представителей телекоммуникационной индустрии РФ — ведомств, поставщиков сервисов, их заказчиков.

В сообществе обсуждаются преимущества собственно транкинговых решений прежде всего перед сотовыми технологиями, а также применимость существующих стандартов данных коммуникаций в РФ. Так, в среде экспертов в области решений, о которых идет речь, распространена точка зрения, по которой для России оптимальной будет как раз таки технология TETRA — с учетом особенностей развития услуг связи в РФ.

Выше мы отметили, что именно стандарт «ТЕТРА» был выбран для выстраивания коммуникационной инфраструктуры на Олимпиаде в Сочи. Но в России, так или иначе, представлено большинство технологий транкинговой связи из тех, что где-либо применяются в мире — и это не считая специальных военных разработок. Большое количество решений соответствующего типа, внедренных в РФ, обусловлено, прежде всего, отсутствием единых, принятых в федеральном масштабе, критериев выбора оптимальных технологических платформ для выстраивания транкинговой инфраструктуры.

Развитие соответствующего типа связи в России может быть затруднено неоднозначным восприятием преимуществ данных решений руководителями ведомств, которые являются основными пользователями рассматриваемых технологий. Для них не всегда очевидно превосходство транкинговой инфраструктуры над сотовыми сетями. Это обусловлено разными причинами.

Прежде всего тем, что аппаратура аналоговых систем транкинговой связи, цифровых решений соответствующего типа стоит, как правило, ощутимо дороже, чем девайсы для пользования сотовыми технологиями. При этом ведомства часто не берут в расчет очевидных преимуществ транкинговой связи — заключающихся, прежде всего, в оперативности и защищенности переговоров и передачи информации. Кроме того, фактические расходы, связанные с пользованием связью, при задействовании транкинговых решений могут быть существенно ниже, чем в случае с сотовыми коммуникациями — при грамотном проектировании данного типа инфраструктуры связи.

Стоит отметить, что принцип транкинговой связи применим не только для обеспечения оперативных переговоров между абонентами. На базе соответствующих технологий могут быть реализованы системы определения местонахождения объекта — в сочетании с его GPS-координатами, а также его отслеживания мониторинговыми центрами. При этом при выстраивании соответствующей инфраструктуры может не потребоваться внедрения относительно дорогих дуплексных решений — вполне может оказаться достаточно и симплексных девайсов. Данный способ применения транкинговой связи — еще один фактор роста интереса к ней со стороны различных российских фирм и ведомств.

Резюме

Итак, мы изучили, что такое транкинговые технологии, рассмотрели основные коммуникационные стандарты, соответствующие им. Основные пользователи соответствующих решений — российские спецслужбы, ведомственные структуры, крупные бизнесы. В подразделениях армии РФ применяются транкинговые системы связи, разработанные специально для решения военных задач — закрытого типа.

Основные преимущества, которыми характеризуются рассматриваемые технологии: оперативность обмена данными, защищенность информации, высокая скорость передачи данных (если речь идет о современных цифровых стандартах), возможность выстраивания сетей в большом масштабе — при условии использования высокопроизводительных и представленных в достаточном количестве базовых станций.

У транкинговых сетей много общего с сотовыми — функционирование в ультра-коротком диапазоне, возможность передачи текстовых сообщений между девайсами, а также получения доступа в интернет при задействовании соответствующих устройств. Аппаратные решения, используемые в рамках транкинговой инфраструктуры, стоят, как правило, дороже. Но при оптимизированном их внедрении компания-заказчик может существенно сэкономить — прежде всего, на трафике.

В мире принято довольно большое количество стандартов транкинговой связи. В России и Европе наибольшей популярностью характеризуется технология «ТЕТРА», в США — APCO. Хотя в РФ с той или иной степенью активности задействуется большинство существующих в мире транкинговых стандартов.

Перспективы соответствующего типа связи в РФ во многом зависят от того, какие из технологий будут приняты в качестве ведущих — хотя бы в большинстве регионов страны. Есть основания говорить о том, что главным стандартом все же будет «ТЕТРА» - как наиболее подходящий для России исходя из специфики развития телекоммуникационного рынка страны.

Другое значимое условие успешного развития такого технологического направления, как транкинговая связь в РФ — повышение уровня знаний и компетенций руководства ведомств, являющихся фактическими и потенциальными пользователями соответствующих решений. Пока для многих структур власти преимущества рассматриваемых технологических концепций — не вполне очевидны. Но, безусловно, у транкинговых решений в РФ — есть свой потребитель, и они уже сейчас самым активным образом используются. В России приняты нормативно-правовые акты, регулирующие использование соответствующих технологий спецслужбами. Таким образом, уже на уровне законодательного регулирования в РФ созданы условия для развития транкинговой связи.

Безусловно, может потребоваться разработка и принятия дополнительных правовых актов, действие которых будет распространяться также и на гражданские сферы — но в случае заинтересованности делового сообщества и крупнейших ведомств, можно ожидать появления соответствующих инициатив на уровне регулирующих структур власти.

Развитие рассматриваемых технологий в РФ может прослеживаться в расширении областей его применения, а также в совершенствовании аппаратных компонентов и ПО, задействуемых в целях обеспечения функционирования транкинговой инфраструктуры.