Справочник авиационных профилей. Профиль крыла самолета: виды, технические и аэродинамические характеристики, метод расчета и наибольшая подъемная сила Авиационный профиль

Полная аэродинамическая сила и ее проекции

При расчете основных летно-технических характеристик самолета, а также его устойчивости и управляемости необходимо знать силы и моменты, действующие на самолет.

Аэродинамические силы, действующие на поверхность самолета (давление и трение), можно привести к главному вектору аэродинамических сил , приложенному в центре давления (рис. 1), и паре сил, момент которых равен главному моменту аэродинамических сил относительно центра масс летательного аппарата.

Рис. 1. Полная аэродинамическая сила и ее проекции в двумерном (плоском) случае

Аэродинамическую силу обычно задают проекциями на оси скоростной системы координат (ГОСТ 20058-80). При этом проекцию на ось , взятую с обратным знаком, называют силой лобового сопротивления , проекцию на ось - аэродинамической подъемной силой , проекцию на ось - аэродинамической боковой силой . Эти силы могут быть выражены через безразмерные коэффициенты лобового сопротивления , подъемной силы и боковой силы , соответственно:

; ; ,

где - скоростной напор, Н/м 2 ; - воздушная скорость, м/с; r - массовая плотность воздуха, кг/м 3 ; S - площадь крыла самолета, м 2 . К основным аэродинамическим характеристикам относят также аэродинамическое качество

.

Аэродинамические характеристики крыла , , зависят от геометри­ческих параметров профиля и крыла, ориентации крыла в потоке (угла атаки a и скольжения b), параметров подобия (чисел Рейнольдса Re и Маха ),высоты полета H , а также от других параметров. Числа Маха и Рейнольдса являются безразмерными величинами и определяются выражениями

где a – скорость звука, n - кинематический коэффициент вязкости воздуха в м 2 /с, – характерный размер (как правило полагают , где – средняя аэродинамическая хорда крыла).Для определения аэродинамических характеристик самолета иногда исполь­зуются более простые, приближенные методы. Самолет рассматривается как совокупность отдельных частей: крыла, фюзеляжа, оперения, гондол двигателей и т.д. Определяются силы и моменты, действующие на каждую из отдельных частей. При этом используются известные результаты аналитических, численных и экспериментальных исследований. Силы и моменты, действующие на самолет, находятся как сумма соответствующих сил и моментов, действующих на каждую из его частей, с учетом их взаимного влияния.



Согласно предлагаемой методике, расчет аэродинамических харак­теристик крыла производится, если заданы некоторые геометрические и аэродинамические характеристики профиля крыла.

Выбор профиля крыла

Основные геометрические характеристики профиля задаются следующими параметрами. Хордой профиля называется отрезок прямой, соединенной две наиболее удаленные точки профиля. Хорда делит профиль на две части: верхнюю и нижнюю. Наибольший перпендикулярный хорде отрезок, заключенный между верхним и нижним обводами профиля, называется толщиной профиля c (рис. 2). Линия, соединяющая середины отрезков, перпендикулярных хорде и заключенных между верхним и нижним обводами профиля, называется средней линией . Наибольший перпендикулярный хорде отрезок, заключенный между хордой и средней линией профиля, называется кривизной профиля f . Если , то профиль называется симметричным .

Рис. 2. Профиль крыла

b - хорда профиля; c - толщина профиля; f - кривизна профиля; - координата максимальной толщины; - координата максимальной кривизны

Толщину c и кривизну профиля f , а также координаты и , как правило измеряют в относительных единицах , , , или в процентах , , , .

Выбор профиля крыла связан с удовлетворением различных требований, предъявляемых к самолету (обеспечение требуемой дальности полета, высокой топливной эффективности,крейсерской скорости , обеспечение безопасных условий взлета и посадки и др.). Так, для легких самолетов с упрощенной механизацией крыла следует обращать особое внимание на обеспечение максимального значения коэффициента подъемной силы, особенно на режиме взлета и посадки. Как правило, такие самолеты имеют крыло с большим значением относительной толщины профиля % = 12 ¸ 15%.

Для дальних самолетов с высокой дозвуковой скоростью полета, у которых увеличение на взлетно-посадочных режимах достигается благодаря механизации крыла, упор делается на достижение лучших характеристик на крейсерском режиме, в частности, на обеспечение режимов .

Для нескоростных самолетов выбор профилей производится из серии стандартных (обычных) профилей NACA или ЦАГИ, которые при необходи­мости могут быть модифицированы на этапе эскизного проектирования самолета.

Так, профили NACA с четырехзначными обозначениями могут быть использованы на легких тренировочных самолетах, а именно для концевых сечений крыла и хвостового оперения. Например, профили NACA2412 (относительная толщина % = 12%, координата максимальной толщины % = 30%, относительная кривизна % = 2%, координата максимальной кривизны % = 40%) и NACA4412 ( % = 12%, % = 30%, % = 4%, % = 40%) имеют достаточно высокое значение и плавные срывные характеристики в районе критического угла атаки .

Пятизначные профили NACA (серии 230) обладают наибольшей подъемной силой из всех стандартных серий, но их срывные характеристики менее благоприятны.

Профили NACA с шестизначным обозначением ("ламинарные") имеют низкое профильное сопротивление в узком диапазоне значений коэф­фициента . Эти профили очень чувствительны к шероховатости поверхности, загрязнениям, наростам .

Классические (обычные) профили, используемые на самолетах с малы­ми дозвуковыми скоростями, отличаются достаточно большими местными возмущениями (разряжениями) на верхней поверхности и, соответственно, небольшими значениями критического числа Маха . Критическое число Маха является важным параметром, определяющим величину лобового сопротивления самолета (при > на поверхности летательного аппарата появляются области местных сверхзвуковых течений и дополнительное волновое сопротивление).

Активный поиск путей повышения крейсерской скорости полета (без увеличения сопротивления самолета) привел к необходимости изыскать спо­собы дальнейшего повышения по сравнению с классическими скорост­ными профилями. Таким способом повышения является уменьшение кривизны верхней поверхности, что приводит к снижению возмущений на значительной части верхней поверхности. При малой искривленности верхней поверхности сверхкритического профиля уменьшается доля создаваемой им подъемной силы. Для компенсации этого явления производится подрезка хвостового участка профиля путем плавного изгиба его вниз (эффект "закрылка"). В связи с этим, средняя линия суперкритических профилей имеет харак­терный S - образный вид, с отгибом вниз хвостового участка. Для суперкритических профилей, как правило, характерно наличие отрицательной кривизны в носовой части профиля. В частности, на авиасалоне МАКС 2007 в экспозиции ОАО ²Туполев² был представлен макет самолета ТУ-204-100СМ с усеченным крылом, что позволяет получить представление о геометрических характеристиках профиля в корневой части крыла. Из представленного ниже фото (рис. 3.) видно наличие у профиля ²брюшка² и достаточно плоской верхней части, характерных для суперкритических профилей. Сверх­критические профили по сравнению с обычными скоростными профилями позволяют повысить примерно на = 0,05 ¸ 0,12 или увеличить тол­щину на % = 2,5 ¸ 5%. Применение утолщенных профилей позволяет увели­чить удлинение lкрыла на = 2,5 ¸ 3 или уменьшить угол стреловид­ности c крыла примерно на = 5 ¸ 10° при сохранении значения .

Рис. 3. Профиль крыла самолета ТУ-204-100СМ

Использование сверхкритических профилей в компоновке стреловид­ных крыльев является одним из основных направлений совершенствования аэродинамики современных транспортных и пассажирских самолетов .

Следует отметить, что при несомненном преимуществе сверхкритичес­ких профилей, по сравнению с обычными, некоторыми недостатками их яв­ляются повышение значения коэффициента момента на пикирование и тонкая хвостовая часть профиля.

Основные геометрические и аэродинамические характеристики крыла конечного размаха

В течение последних 30 ¸ 40 лет основным типом крыла для дозвуковых магистральных самолетов являлось стреловидное (c = 30 ¸ 35°) крыло с удли­нением , выполненное с сужением h = 3 ¸ 4. Перспективные пас­сажирс­кие самолеты, представленные на авиасалоне ²МАКС - 2007² (Ту - 334, Sukhoy Superjet 100) имели удлинение . Прогресс в увеличении удлинения крыла достигнут, в основном, за счет использования композиционных материалов в конструкции крыла.

Рис. 4. Однопанельное крыло

Сечение крыла в плоскости симметрии называется корневым профилем , а его хорда - корневой ; на концах крыла, соответственно, концевой профиль и концевая хорда . Расстояние от одного концевого профиля до другого называется размахом крыла . Хорда профиля крыла может изменяться вдоль его размаха. Отношение корневой хорды к концевой называется сужением крыла h. Отношение называется удлинением крыла . Здесь S - площадь проекции крыла на плоскость, перпендикулярную плоскости симметрии крыла и содержащую корневую хорду. Если по ходу полета концы отклонены относительно корневого сечения, говорят о стреловидности крыла . На рис. 4 показан угол между перпендикуляром к плоскости симметрии и передней кромкой крыла определяющий стреловидность по передней кромке . Говорят также об угле стреловидности по задней кромке , но важнее всего - угол (или просто c) стреловидностипо линии фокусов , т.е. по линии, соединяющий фокусы профилей крыла вдоль его размаха. При нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки крыла не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, то говорят о положительной стреловидности , если вперед - об отрицательной . Если передняя и задняя кромки крыла не имеют изломов, то стреловидность не меняется вдоль размаха. В противном случае, стреловидность может изменять свое значение и даже знак.

Современные стреловидные крылья с углом стреловидности c= 35° дозвуковых магистральных самолетов, рассчи­танных на крейсерские скорости, соответствующие = 0,83 ¸ 0,85, имеют среднюю относи­тельную толщину крыла % = 10 ¸ 11%, а сверхкрити­ческие крылья с углом стреловидности c = 28 ¸ 30° (для перспективных самолетов) около % = 11 ¸ 12%. Распределение толщины по размаху крыла определяется из условий реализации заданного полезного объема и минимального волнового сопротивления. С целью реализации эффекта скольжения в бортовых сече­ниях стреловидных крыльев применяют профили с "более передним" расположением точки максимальной толщины ,по сравнению с остальной частью крыла.

Расположены не в одной плоскости, то крыло имеет геометрическую крутку (рис. 6), характеризующую углом j.

Рис. 6. Концевой и корневой профили крыла при наличии геометрической крутки

Исследования аэродинамических моделей самолетов показали, что применениесверхкритических профилей в сочетании с геометрической круткой позволяют обеспечить . В данной работе использует­ся приближенная методика определения аэродинамических характеристик крыла, основанная на использовании экспериментальных данных. Расчет аэродинамических коэффициентов и крыла проводится в несколько этапов. Исходными данными для расчета являются некоторые геометрические и аэродинамические характеристики профиля. Эти данные могут быть взяты, в частности, из атласа профилей.

По результатам расчета аэродинамических коэффициентов строится зависимость и поляра - зависимость . Типичный вид этих зависимостей для малых дозвуковых скоростей представлен, соответственно, на рис. 7 и рис. 8.


В начале 60х Ричард Кляйн решил сделать бумажный самолетик , способный выдерживать довольно сильный ветер , высоко подниматься и хорошо планировать . После долгих экспериментов он достиг поставленной цели . Однажды Ричард показал полет своего самолетика Флойду Фогельману . Оценив полет , два друга решили запатентовать свое изобретение - «ступенчатый профиль » крыла . В одном из полетов на поле , где в свое время совершили свой полет братья Райт , самолетик пролетел 122 метра .

Аэродинамические профили Кляйна-Фогельмана модифицированные КФм (в англоязычной литературе KFm ) представляют собой целое семейство профилей , объединенных наличием «ступеньки », или нескольких . Каждый из профилей имеет свои особенности и оптимальную область применения .

На настоящий момент имеется 8 профилей КФм. Рассмотрим эти профили

КФм-1

Толщина профиля 7-9%. Ступенька на 40% хорды .

Низкая скорость сваливания , очень стабильный полет , неплохая подъемная сила , простота изготовления .

Хороший профиль для большинства моделей , хотя немного уступает КФм-2

КФм-2

Толщина 7-9%. Ступенька на 50%.

Более высокая подъемная сила , низкая скорость сваливания , стабильный центр давления . Очень прост в изготовлении , отлично подходит для большинства малых и среднеразмерных пенолетов (до 1,2-1,5м ).

КФм-3

Толщина 9-12%. Ступеньки на 50% и 75% хорды .

Более сложен в изготовлении , но обладает высокими летными характеристиками - высокой подъемной силой , низкой скоростью сваливания и механической прочностью . Отличный профиль для тяжелых моделей и планеров.

КФм-4

Толщина 6-9%. Ступеньки на 50% хорды .

Простой в изготовлении , быстрый и маневренный профиль обладает более высокой скоростью сваливания по сравнению с другими профилями КФм. Отличный выбор для пилотажных моделей . Очень практичен на летающих крыльях - позволяет летать на них медленно.

КФм-5

Ступенька на 40-50% хорды .

Добавление ступеньки на выпукло-вогнутых профилях повышает подъемную силу и в тоже время повышает жесткость крыла . Применим на верхнепланах.

КФм-6

Толщина 9-12%. Ступеньки на 25% и 50%.

Прост в изготовлении . Обладает хорошими летными характеристиками на низких скоростях, в тоже время быстр и маневренен. Невысокая скорость сваливания . Отлично подходит для летающих крыльев любых размеров. Хорош для «вторых» моделей , после тренера.

КФм-7, КФм-8

Эти профили находятся в стадии разработки. Стоит поэкспериментировать с бОльшим количеством ступеней.

В то время как большинство «обычных» профилей делаются более толстыми при необходимости увеличить подъемную силу, или более тонкими для уменьшения лобового сопротивления, профили КФм позволяют одновременно улучшить обе эти характеристики.

Так каким же образом это происходит?!

Непосредственно за ступенькой образуется устойчивый вихрь, который как бы становится частью профиля . Поток воздуха, обтекая этот комбинированный (частично жесткий, частично «воздушный») профиль , создает подъемную силу. А так как на части профиля (на участке вихря) поток воздуха трется о воздух, то лобовое сопротивление крыла с профилем КФм получается заметно ниже сопротивления аналогичного крыла с «обычным» профилем. Таким образом, аэродинамическое качество крыла с профилем КФм выше. Более того, наличие вихря препятствует срыву потока, тем самым увеличивая критический угол атаки.

Чем же профили Кляйна-Фогельмана могут быть интересны авиамоделистам?

Во-первых, эффективность профилей КФм проявляется на малых числах Рейнольдса (т.е. малых скоростях и размерах), характерных для малых авиамоделей. Во-вторых, изготовление профилей КФм довольно просто, особенно при строительстве из листовых материалов (например, потолочной плитки). Более того, в большинстве случаев, применение КФм повышает жесткость крыла .

Конечно, все это выглядит очень заманчиво, но моделист «не поверит, пока не проверит». Моделисты провели серию экспериментов для оценки характеристик профилей КФм. В частности, Рич Томсон (RICH THOMPSON) провел сравнение(обсуждение на rcgroups.com) крыла на одном самолете. При этом были проведены полеты на следующих крыльях (обратите внимание, как создан профиль ):

Плоское крыло

Симметричный двуяковыпуклый профиль Плоско-выпуклый профиль Clark
КФм-1 КФм-2 КФм-3
КФм-4 (но ступеньки на 40% хорды )

Полетные качества модели были оценены по пятибалльной системе, результаты приведены в таблице:

Показатель

Плоское

Двояко выпуклое

Плоско-выпуклое

КФМ-1

КФМ-2

КФМ-3

КФМ-4

Максимальная скорость полета

3

Обратный полет

5

Срывные характеристики

5

Чувствительность по рулю высоты

5

Медленный полет

4

Чувствительность по элеронам

3

Плавность полета

4

Полет на больших углах атаки

5

Планирование

2

Курсовая устойчивость

4

ОБЩИЙ БАЛЛ

40

Победителем среди оцененных профилей явился профиль КФм-2 (ступенька на 50% хорды на верхней стороне).

Учитывая все вышесказанное, крыло с данным профилем стоит опробовать в своей новой модели. Качество его не вызывает сомнений, а простота изготовления (из потолочной плитки и подобных материалов) играет важную роль при самостоятельном изготовлении авиамодели.

Не упустите возможность, создайте новую модель с участием профиля-победителя, качество его превосходно, а стоимость материала не «ударит по карману» - и мир в семье и любимое занятие не пострадает!

Акбар Авлияев (akbaraka)


Сравнительный анализ профилей крыла для скоростных маневренных моделей

Юрий Арзуманян

(yuri _ la )

Данная статья является обобщением обсуждения этой на форуме rc-aviation. Речь там шла конкретно о моделях воздушного боя, и, в частности, такого типа, как на Рис. 1 ниже.

Рис. 1. Бойцовка SB-7AS от клуба Alisa Air

Я намеренно не упомянул это в заголовке статьи, поскольку примененный ниже подход применим не только к моделям воздушного боя. Более того, этот подход был впервые предложен еще на заре авиации одним из отцов-основателей современной аэродинамики нашим великим ученым Николаем Егоровичем Жуковским. С тех пор предложенный им метод так и называют методом потребных тяг Н.Е. Жуковского.

Чтобы не повторять то, что обсуждалось в форуме, замечу, что вопрос об использовании вместо относительного толстого симметричного профиля более тонкого и, в особенности, несимметричного профиля для бойцовок, возникает с определенной периодичностью. Не случайно говорят, что все новое – это хорошо забытое старое. Ведь к симметричному относительно толстому профилю ведущие бойцы пришли неспроста. За этим стоят годы проб, ошибок, нахождения компромиссов и накопления опыта.

Я не буду углубляться в тему воздушного боя, поскольку последний раз управлял кордовой бойцовкой еще в пионерском детстве, и не считаю себя в этом деле экспертом. Для этого лучше внимательно проштудировать соответствующие разделы форумов, поскольку там отмечаются настоящие спортсмены, а не просто любители. Скажу только, что основные аргументы в пользу перехода на более тонкий несимметричный, а то и вообще плоско-выпуклый профиль, обычно сводятся к следующим:

1) Более низкое лобовое сопротивление модели, отсюда более высокая достижимая скорость полета.

2) Время прямого полета в ходе боя в среднем больше времени полета в инверте, поэтому прямой полет более важен.

3) Меньший вес и стоимость изготовления модели.

Есть и другие предполагаемые достоинства, но они спорны, и упоминать я их не буду. А основным недостатком при этом считается ухудшение качества обратного пилотажа (в перевернутом полете).

Итак, давайте приступим к сравнению профилей. Казалось бы, ожидаемый результат анализа очевиден. Действительно, более тонкий профиль имеет меньшее лобовое сопротивление. Значит, скорость полета будет больше, и с этим не поспоришь! Но... давайте займемся расчетами и посмотрим насколько это справедливо.Для получения числовых результатов надо отталкиваться от конкретных характеристик. Поэтому примем следующие исходные данные для модели с фото.

Характеристики планера бойцовки на Рис. 1:

Размах крыла - 1000 мм

Площадь крыла – 20.8 кв. дм.

Взлетная масса модели - 475 грамм

Расчетная скорость полета - 32 м/с (это всего лишь некоторая опорная величина, дальше в расчетах скоростью будем варьировать)

Исходный профиль - симметричный 15% (NACA 0015 – близок к исходному)

Мотор - Eurgle RC Plane 1580kv D2810 Brushless Outrunner Back Mounting Motor (300W)

Батарея - 2200мА 3S 25С

Регулятор на 40А

Статика на стенде:

Винт - МА 8х5

Ток - 26А

Мощность - 270W

Тяга - 980 гр.

Для сравнения возьмем два профиля ЦАГИ. Первый – чисто плоско-выпуклый профиль ЦАГИ-719, относительная толщина примерно 10% . Второй профиль тоже ЦАГИ, только он со скругленной передней кромкой. Это ЦАГИ-831.

Наш анализ серьезно облегчается тем, что мы рассматриваем летающее крыло без выраженного фюзеляжа. Поэтому в общей величине аэродинамического сопротивления это можно учесть небольшим поправочным коэффициентом, но на СРАВНИТЕЛЬНЫЕ результаты это не сильно повлияет.

Чтобы провести соответствующие расчеты надо знать аэродинамические характеристики каждого профиля. Начнем с плоско-выпуклого.

Таблица 1. Геометрия профиля ЦАГИ-719.

Геометрия профиля

X

Y+

Y-

0.025

0.04

0.05

0.0538

0.0722

0.0908

0.0974

0.0962

0.0896

0.0785

0.0636

0.0453

0.024

Вот так он выглядит:


Рис. 2. Контур профиля ЦАГИ-719

А его характеристики в таблице ниже.

Таблица 2. Аэродинамические характеристики профиля ЦАГИ-719

?, град

Cy

Cx

k

0.036

0.0366

0.983607

0.17

0.0258

6.589147

0.316

0.0234

13.50427

0.458

0.0242

18.92562

0.0316

18.98734

0.746

0.0424

17.59434

0.876

0.0456

19.21053

1.004

0.0742

13.531

1.14

0.0926

12.31102

1.25

0.1162

10.75731

1.322

0.141

9.375887

1.33

0.1778

7.480315

1.324

0.2448

5.408497

1.19

0.314

3.789809

В расчетах можно пользоваться табличными данными. Только в этом случае придется промежуточные значения интерполировать, а это влечет за собой громоздкие вычисления и вообще не очень удобно. Чтобы этого избежать, я пользуюсь тем, что нас интересует ограниченная область углов атаки, где табличные данные легко аппроксимировать аналитической формулой. Я вывел такие аппроксимирующие формулы для Сх и Су:

Здесь? - угол атаки в градусах.

Смотрим, насколько удачна наша аппроксимация.


Рис. 3. Аппроксимация аэродинамических характеристик профиля ЦАГИ-719

Из графиков видно, что в зоне малых углов атаки приближение аналитическими формулами вполне удовлетворительное.

Таблица 3. Геометрия профиля ЦАГИ-831

Геометрия

X

Y+

Y-

0.025

0.025

0.025

0.057

0.005

0.05

0.07

0.001

0.089

0.106

0.11

0.105

0.095

0.082

0.066

0.046

0.026

Вот так он выглядит:


Рис. 4. Контур профиля ЦАГИ-831

Аэродинамические характеристики в таблице ниже.

Таблица 4. Аэродинамические характеристики профиля ЦАГИ-831

Аэродинамические характеристики

?, град

Cx

Cy

k

0.0140

0.0120

0.857

0.0154

0.1600

10.390

0.0184

0.3080

16.739

0.0236

0.4580

19.407

0.0346

0.6050

17.486

0.0468

0.7540

16.111

0.0612

0.9000

14.706

0.0814

1.0040

12.334

0.1016

1.1600

11.417

0.1242

1.2370

9.960

0.1552

1.2600

8.119

0.1980

1.3950

7.045

0.3204

1.0070

3.143

Для этого профиля выведены такие аппроксимирующие формулы для Сх и Су:

где


Рис. 5. Аппроксимация аэродинамических характеристик профиля ЦАГИ-831

Нам осталось привести характеристики симметричного профиля. Вот они:

Таблица 5. Геометрия профиля NACA -0015

Геометрия профиля

X

Y+

Y-

0.0125

0.02367

0.02367

0.025

0.03268

0.03268

0.05

0.04443

0.04443

0.075

0.0525

0.0525

0.05853

0.05853

0.15

0.06682

0.06682

0.07172

0.07172

0.25

0.07427

0.07427

0.07502

0.07502

0.07254

0.07254

0.06617

0.06617

0.05704

0.05704

0.0458

0.0458

0.03279

0.03279

0.0181

0.0181

0.95

0.01008

0.01008

0.00158

0.00158

Так выглядит симметричный профиль.


Рис. 6. Контур профиля NACA-0015

Таблица 6. Аэродинамические характеристики профиля NACA -0015

Аэродинамические характеристики профиля

?, град

Cy

Cx

k

0.0077

0.000

0.15

0.009

16.667

0.014

21.429

0.45

0.02

22.500

0.031

19.355

0.74

0.042

17.619

0.89

0.06

14.833

1.02

0.075

13.600

1.17

0.095

12.316

0.119

10.924

1.42

Так выглядят графики аэродинамических характеристик для этого профиля.


Рис. 7. Аппроксимация аэродинамических характеристик профиля NACA -0015

Теперь у нас есть все данные для проведения сравнительных расчетов. Рассмотрим прямолинейный установившийся горизонтальный полет с постоянной скоростью. Поскольку в таком полете подъемная сила уравновешивает вес модели, то для каждой скорости можно найти требуемый балансировочный угол атаки. Для этого мы зададимся некоторым диапазоном скоростей полета модели. Для каждой скорости полета вычислим лобовое сопротивление. Поскольку в полете с постоянной скоростью тяга уравновешивает лобовое сопротивление, то, имея угол атаки, мы это сопротивление вычислим, и получим потребную тягу для полета на этой скорости.

X – лобовое сопротивление

S – площадь крыла

V – скорость полета

– плотность воздуха

Последовательность расчетов следующая. Задаемся скоростью полета в интересующем нас диапазоне. Тогда из выражения для Y можно вычислить потребное значение коэффициента подъемной силы для установившегося полета на этой скорости.

Имея для каждого профиля аппроксимирующие формулы, мы по значению Cy вычислим потребное значение балансировочного угла атаки. Например, из этой формулы для NACA -0015.

получим

Подставив его в выражение для Cx,

получим величину лобового сопротивления, равного потребной тяге для данной скорости полета. Это простая арифметика и я не буду здесь приводить пример числового расчета, а сразу приведу результат в виде таблицы и графика потребных тяг для всех трех профилей.

Таблица 7. Зависимость потребной тяги от скорости полета

Потребная тяга, г

Скорость полета, м/с

Профиль крыла

V

ЦАГИ-831

ЦАГИ-719

NACA-0015

Из этой таблички видно, что для опорной скорости полета 32 м/с наименьшая потребная тяга у профиля ЦАГИ-831. Затем идет симметричный профиль NACA-0015, и хуже всего результаты у профиля ЦАГИ-719. Наглядно все это продемонстрировано на графике.


Рис. 8. График потребных тяг сравниваемых профилей в зависимости от скорости полета

В общем, предварительные результаты расчетов катастрофические для профиля ЦАГИ-719. Получается, что этот профиль хорошо летит в диапазоне скоростей полета 6-10 м/с. Такой полет происходит на околонулевом угле атаки при скоростях менее 40 км в час. Для полета на более высоких скоростях, в частности для заданной скорости 32 м/c (115 км/ч) необходимо лететь на ОТРИЦАТЕЛЬНОМ угле атаки около четырех градусов! Это чистая теория, на практике так модель лететь не будет. Ею будет практически невозможно управлять. Но вывод однозначен - этот профиль не для таких моделей.

Стоит заметить, что выбранные два профиля ЦАГИ существенно отличаются скруглением носка, и теперь видно насколько это влияет на летные характеристики крыла. Я намеренно взял два таких похожих профиля, у которых только носок разный, чтобы показать это влияние.

Также из таблицы можно видеть, что при одинаковой располагаемой тяге в зоне скоростей выше опорной разница в развиваемой скорости составит примерно процентов пятнадцать. То есть преимущество (в данном случае у ЦАГИ-831 по сравнению с NACA-0015) у несимметричного профиля перед симметричным есть, но небольшое! Для симметричного профиля NACA-0015 балансировочный угол на расчетной скорости 115 км в час положительный, примерно полградуса, потребная тяга на этом режиме примерно 270 грамм.

Я думаю, что если и дальше исследовать вопрос, то может быть стоит посмотреть более тонкие симметричные профили. Хотя если наложено ограничение на максимальную допустимую перегрузку из условий прочности, то время установившегося виража линейно растет с увеличением скорости полета. То есть более тонкие симметричные профили приведут к росту скорости, но снижению маневренности.

Дебаты на тему маневренность против скорости активно велись перед Второй Мировой Войной. Мессершмитты Me -109 против наших Чаек (И-153) и Ишачков (И-16). Скорость победила. Но в тех боях не было правил. Не было ограничения полетной зоны и т.п. Что лучше для боя радиоуправляемых моделей – не мне решать.

В заключение хотел бы указать то направление, в котором было бы целесообразно продолжить теоретические изыскания, после того, как вы определились с профилем крыла. Это оптимизация винтомоторной группы (ВМГ). Мощность мотора – обороты (kv) – диаметр и шаг винта. Но это уже совсем другая тема…

Здесь же я хочу выразить благодарность Геннадию Шабельскому (SURHAND ) и Тарасу Кушниренко (Kushnirenko ) за поддержку и практическую помощь в написании данной статьи.

Ламинарный профиль

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать , а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). , проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Ламинарный профиль" в других словарях:

    ламинарный профиль Энциклопедия «Авиация»

    ламинарный профиль - ламинарный профиль — профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как … Энциклопедия «Авиация»

    Bell P-63 «Kingcobra» - Bell P 63 «Kingcobra» Лётно технические характеристики Двигатель Авиационное артиллерийское оружие Авиационные средства поражения Классификаторы Факты Использование в иностранных ВВС Модификации Галерея … Военная энциклопедия

    HA 420 HondaJet Тип бизнес джет Разработчик Honda Aircraft Company … Википедия

    Проекция касательных напряжений, приложенных к обтекаемой поверхности тела, на направление его движения. С. т. есть составная часть сопротивления аэродинамического (СА) и обусловлено проявлением действия сил внутреннего трения (вязкости); при… … Энциклопедия техники Энциклопедия «Авиация»

    Уменьшение сопротивления шара с возрастанием скорости набегающего потока при Рейнольдса числах Re, близких к критическому значению Re.(Кризис сопротивления) 1,5*105. Явление было установлено в 1912 А. Г. Эйфелем, объяснено в 1914 Л. Прандтлем.… … Энциклопедия техники

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать сопротивление трения, а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). Лётные исследования, проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом Маха число полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

  • - слоистый, плоский. Ламинарное течение жидкости – течение, при котором слои жидкости перемещаются параллельно, не перемешиваясь...

    Словарь микробиологии

  • - ЛАМИНАР – устройство для обеспечения асептических условий, необходимых для микробиол...

    Словарь микробиологии

  • - См. Мореля болезнь...

    Толковый словарь психиатрических терминов

  • - пограничный слой, в котором имеет место ламинарное течение...

    Энциклопедия техники

  • - "...: поток воздуха, в котором скорости воздуха вдоль параллельных линий тока одинаковы..." Источник: "АСЕПТИЧЕСКОЕ ПРОИЗВОДСТВО МЕДИЦИНСКОЙ ПРОДУКЦИИ. ЧАСТЬ 1. ОБЩИЕ ТРЕБОВАНИЯ...

    Официальная терминология

  • - АН ПРОФИЛЬ * en profil. Её величество <на картине> видна en profil или со стороны. Штелин 1 83. См. также Профиль...
  • - кр.ф. ламина/рен, ламина/рна, -рно,...

    Орфографический словарь русского языка

  • - в про́филь нареч. качеств.-обстоят. Сбоку...

    Толковый словарь Ефремовой

  • - ламина́рный прил. Слоистый, плоский...

    Толковый словарь Ефремовой

  • - в пр"...
  • - ламин"...

    Русский орфографический словарь

  • - ПВХ-пр"...

    Русский орфографический словарь

  • - ЛАМИНАРНЫЙ ая, ое. laminaire, нем. laminar <лат. lamina пластина, полоска. физ. Слоистый. Ламинарное течение жидкости. Ламинарность и, ж. Крысин 1998...

    Исторический словарь галлицизмов русского языка

  • - ламина́рный слоистый; плоский; л-ое течение жидкости - течение, при котором слои жидкости перемещаются параллельно, не перемешиваясь...

    Словарь иностранных слов русского языка

  • - ...

    Формы слова

  • - слоистый, плоский,...

    Словарь синонимов

"Ламинарный профиль" в книгах

Муравей в профиль и в фас

автора Халифман Иосиф Аронович

Муравей в профиль и в фас

Из книги Операция „Лесные муравьи" автора Халифман Иосиф Аронович

Муравей в профиль и в фас Здесь речь идёт о муравьиной семье, о муравейнике, который представляет собой ансамбль взаимно друг друга дополняющих особей физически независимых, но физиологически связанных. Это сглаженное органическое единство, развивающееся по своим

Профиль развития

Из книги Приключения другого мальчика. Аутизм и не только автора Заварзина-Мэмми Елизавета

Профиль развития В результате многолетних исследований еще в 1960-х годах в Институтах пришли к заключению, что в норме ребенок в своем развитии последовательно проходит определенные этапы в результате становления соответствующих отделов мозга. Порядок строго определен,

Вид в профиль

Из книги Мольер автора Мори Кристоф

Вид в профиль Возвращение Людовика XIV и инфанты Испанской после бракосочетания в Сен-Жан-де-Люсе в начале июня 1660 года было триумфальным, подготовленным Мазарини как апофеоз его внешней политики. Мария Тереза, дочь Филиппа IV и сестры Людовика XIII, то есть двоюродная

АНФАС И ПРОФИЛЬ

Из книги Я к вам пришел! автора Лисняк Борис Николаевич

АНФАС И ПРОФИЛЬ Мой арест в 1937 году и вся дальнейшая судьба в известной степени связаны с домом широко известного в то время фотохудожника М.С. Наппельбаума. Он жил с семьей на Петровке напротив Пассажа. Семья занимала на втором этаже квартиру из двух комнат, кухни и

Свой профиль

Из книги Изнанка экрана автора Марягин Леонид

Свой профиль На одном банкете по поводу смычки армии и искусства генерал, увидев Утесова, заявил:- А! Вот Утесов. Он сейчас нам что-нибудь расскажет!И получил ответ:- А! Вот генерал. Он сейчас нам что-нибудь

Профиль и анфас

Из книги Наследники Авиценны автора Смирнов Алексей Константинович

Профиль и анфас Доктор рассказывает:- Приезжаю - херня какая-то. Уже приехала РХБ (реанимационно-хирургическая бригада), пинают кого-то ногами... Я уехал.Второй доктор:- Ну, ведь ругают же нас за непрофильность. Мы же кардиологи, а кардиологических вызовов мало. А они -

Профан или Профиль?

Из книги На благо лошадей. Очерки иппические автора Урнов Дмитрий Михайлович

Профан или Профиль? Виталий Дорофеев, мастер спорта, остался третьим в первенстве СССР по троеборью; выездка, кросс и преодоление препятствий. Он ехал на чистопородном арабском жеребце Профане. Некоторое время мы с ним не виделись. Виктор писал диссертацию «Использование

Ваш профиль риска

Из книги Голый Форекс [Техника трейдинга без индикаторов с высокой вероятностью успеха] автора Некритин Алекс

Ваш профиль риска Битвы выигрываются еще до их начала. Сунь-Цзы (Sun-Tzu) Некоторые люди верят в судьбу. Найдутся такие, которые будут убеждать вас в том, что цифры итогового баланса вашего рабочего счета уже предопределены. Если это так, хотели бы вы поближе познакомиться с

Профиль ответственности

Из книги Менеджерами не рождаются. Непростые уроки достижения реальных результатов автора Свайтек Фрэнк

Профиль ответственности

Пвх-профиль

Из книги Правильный ремонт от пола до потолка: Справочник автора Онищенко Владимир

Пвх-профиль Этот пластиковый профиль на сегодняшний день – безусловный фаворит. Он практичен, надежен, замечательно смотрится как снаружи, так и изнутри, а по сравнению с другими материалами относительно дешев. Специалисты утверждают, что никакой особой разницы в

Профиль

Из книги Энциклопедический словарь (П) автора Брокгауз Ф. А.

Профиль Профиль (техн.) – очертание воображаемого или представленного графически вертикального разреза тела. В архитектуре П. показывает сочетание и чередование обломов и пропорциями своими характеризует стиль произведения. Древние греки впервые стали соразмерять

Профиль

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

НЕ ТОТ ПРОФИЛЬ

Из книги Сборник "Лазарь и Вера" автора Герт Юрий Михайлович

НЕ ТОТ ПРОФИЛЬ Была самая мерзкая пора московской осени: холодное стальное небо сплошь затянуто тучами, резкий ветер мечет по асфальту поземку, норовит забраться за шиворот, в рукава, обрывает последние листья с голых деревьев и на всем - на лицах прохожих, на домах,

36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса

Из книги Гидравлика автора Бабаев М А

36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное? турбулентное, то?1 ? ?2где?1 – скорость, при которой