Подшипники их назначение и классификация. Маркировка и типы подшипников. Где используются устройства скольжения

Подшипником называется особый сборный узел, являющийся частью опоры, поддерживающей вал и обеспечивающий свободное вращение последнего. Видов подобных устройств существует несколько. Конечно же, в обязательном порядке соблюдаются при изготовлении таких изделий, как подшипники, стандарты, предусмотренные ГОСТом.

Основные типы

Для снижения трения в узлах разного рода могут использоваться подшипники:

  • качения;
  • скольжения.

Классификация подшипников качения

Устройства этого типа имеют очень простую конструкцию. Состоят они обычно из двух колец, между которыми находятся тела качения. Последние удерживаются внутри подшипника с помощью специального сепаратора.

Классифицироваться устройства качения могут по следующим признакам:

  • направлению воспринимаемой нагрузки — осевые, радиальные, радиально-упорные;
  • виду тел качения - шарики, ролики;
  • расположению тел качения — одно-, двух- или четырехрядные;
  • форме центрального отверстия — конусные, цилиндрические.

Существуют и такие виды подшипников качения, как обычные и самоустанавливающиеся, а также сдвоенные и простые.

Разновидности подшипников скольжения

Конструкция у устройств этого типа также совершенно несложная. Основой подшипника скольжения, как и качения, являются два кольца, одно из которых движется в процессе работы механизма. Однако вместо шариков или роликов в таких устройствах используются разного рода смазочные материалы, залитые в специальный желоб. Существует подшипники скольжения:

  • гидростатические;
  • гидродинамические.

В устройства первого типа смазка подается извне посредством насоса. Гидродинамические подшипники в этом плане более удобны. В процессе работы они сами выступают в роли насоса. Смазка в них поступает из-за разницы давления между составными частями.

По конструкции подшипники скольжения бывают:

  • сферические;
  • упорные;
  • линейные.

Подшипники первого типа используются в основном в узлах механизмов, работающих на малых скоростях. Основным преимуществом устройств этой разновидности является способность эффективно выполнять свои функции даже при значительных перекосах.

Упорные подшипники устанавливаются в узлах, испытывающих сильные поперечные нагрузки. Чаще всего они применяются в турбинах и паровых установках.

Линейные подшипники при работе выполняют роль направляющих. Функционировать без перебоев они могут даже при постоянных радиальных нагрузках.

Стандарты устройств скольжения

Подшипники любой разновидности — изделия прежде всего стандартные. В противном случае подобрать подобное устройство для того или иного механизма было бы крайне сложно.

По каким же нормативам изготавливаются подшипники? ГОСТ регулирует не только собственно размеры подобных изделий, но и, к примеру, условные обозначения их конструктивных элементов и многие другие параметры. Какие именно нормативные документы регулируют изготовление устройств скольжения, можно посмотреть в представленной ниже таблице.

ГОСТ для подшипников скольжения

Норматив

Какой ГОСТ регулирует

Сокращения и условные обозначения

Параметры для расчета

Стандарты для втулок из медных сплавов

4379-2006, 29201-91

Конструктивные особенности и подшипниковые материалы

Размеры и типы колец

Размеры керамических втулок

Размеры и виды втулок, типы спекаемых материалов

Определения и термины для подшипников механизмов и машин

Основные ГОСТы для подшипников качения

При изготовлении таких устройсв также соблюдаются ГОСТы.

ГОСТ для подшипников качения

Норматив

Какой ГОСТ регулирует

Общие технические условия

Типы и конструктивные исполнения

Канавки, кольца (размеры)

Посадка валов и корпусов

Основные размеры

Требования к шарикам

Требования к роликам игольчатым/цилиндрическим

6870-81/22696-77

Гайки, шайбы для втулок

Грузоподъемность

Методы измерения вибрации

Подшипники: стандарты ГОСТа в отношении размеров

Согласно ГОСТу, все подобные изделия должны иметь определенные внутренний и внешний диаметр, а также ширину. В зависимости от этих параметров определяется серия изделий.

Серии подшипников по размерам

Серия

Диаметр внутренний (мм)

Диаметр внешний (мм)

Ширина (мм)

Вот такие могут иметь подшипники размеры. Таблица, представленная выше, зависимость диаметров и ширины подобных изделий демонстрирует наглядно.

Корпуса подшипников

Госстандарт регулирует в том числе и конструктивное оформление таких устройств. Корпус подшипника может идти:

  • с выемкой;
  • без выемки.

Изделия первой разновидности устанавливаются обычно на обработанные поверхности при направлении нагрузки радиальной от опоры. Модели без выемки монтируются, наоборот, к опоре.

Корпус подшипника может иметь разную ширину. По этому признаку различают изделия типа:

  • ШМ — широкие неразъемные;
  • УБ — узкие неразъемные;
  • РШ — широкие разъемные;
  • РУ — узкие разъемные.

Маркировка

При изготовлении таких изделий, как подшипники, стандарты соблюдаются обязательно. И конечно же, производители подобных устройств, согласно нормативам, должны предоставлять потребителям всю необходимую информацию о них. Маркировка подшипников, выпускаемых в России, состоит обычно из трех частей:

  • основного обозначения;
  • дополнительных знаков справа и слева.

    6-180306УС17Ш.

Здесь основная часть состоит из шести цифр. Дополнительный знак слева («6») обозначает класс точности изделия. Маркировка справа УС17Ш расшифровывается так:

  • У — степень шероховатости;
  • С17 — тип смазки;
  • Ш — степень шумности.

Основные цифры обозначают:

  • серии по наружному диаметру и ширине;
  • внутренние диаметры;
  • конструктивные особенности.

Классы точности подшипников

Этот параметр определяет в первую очередь сферу применения устройства. К примеру, на современные станки сложной конструкции могут устанавливаться подшипники только самого высокого класса точности. В массово же распространенных механизмах зачастую применяются не слишком качественные изделия этого типа. Класс точности подшипника может быть:

  • нормальным (в маркировке не указывается);
  • сверхвысоким — цифра 2;
  • особо высоким — 4;
  • высоким — 5;
  • повышенным — 6;
  • пониженным — 7 или 8.

Таким образом, подшипник из нашего примера относится к повышенному классу точности.

Размеры устройств: внутренний диаметр

На этот параметр указывают первые две цифры с конца в маркировке. Для подшипников с внутренним диаметром свыше 20 мм их нужно умножать на 5. В нашем примере — это цифры 0 и 6. Шесть умножаем на пять, получаем 30 мм.

Конечно же, не только большие могут иметь подшипники размеры. Таблица, представленная ниже, показывает, как маркируется внутренний диаметр маленьких изделий этого типа (до 20 мм). На 5 в данном случае ничего умножать не нужно.

Маркировка подшипников с внутренним диаметром меньше 20 мм

Маркировка

Диаметр

Серия по наружному диаметру

На этот параметр указывает третья цифра справа. При одинаковой конструкции и внутреннем диаметре подшипники могут различаться по наружному диаметру и ширине. В зависимости от этого стандартами определяется и их серия. Наружный диаметр в маркировке указывается третьей цифрой справа, а ширина — седьмой справа. Обозначения согласно стандартам в настоящее время приняты следующие:

  • 1 — серия особо легкая;
  • 2 — легкая;
  • 3 — средняя;
  • 4 — тяжелая;
  • 5 — легкая широкая;
  • 6 — средняя широкая.

Подшипник, маркированный 6-6180306, относится к средней широкой серии.

Тип подшипника

Разновидность устройства, конечно же, также указывается в маркировке. Определяются типы подшипников по четвертой цифре справа. В данном случае для шариковых подшипников приняты следующие обозначения:

  • радиальный — 0;
  • радиальный сферический — 1;
  • радиально-упорный — 6;
  • упорный — 8.

Для роликовых:

  • радиальный с короткими роликами — 2;
  • радиальный сферический — 3;
  • игольчатый или с длинными роликами — 4;
  • радиальный с витыми роликами — 5;
  • конический — 7;
  • упорно-радиальный — 9.

Подшипник с маркировкой 6-180306УС17Ш является радиальным шариковым (четвертая цифра справа — 0).

Международная система

Таким образом, в России предприятия, изготавливающие подшипники, ГОСТа придерживаться должны в обязательном порядке. Определить, что представляет собой изделие, выпущенное у нас в стране, совершенно не сложно по его маркировке. С импортными устройствами этого типа, к сожалению, все далеко не так просто.

За границей классификация подшипников существует такая же, как у нас, а вот какой-то общепринятой четкой системы обозначений, к сожалению, там не имеется. Зарубежные производители маркируют свою продукцию так, как им заблагорассудится.

Дополнительные обозначения на подшипниках, изготовленных, к примеру, в том же Китае, могут наноситься как до основного блока, так и после него. Сама базовая информация, как и в российской системе, обычно представляется в виде нескольких цифр (3-5). Чаще всего в маркировке импортных подшипников:

  • первый символ обозначает тип изделия;
  • следующие две цифры представляют серию размера ISO;
  • последние две цифры указывают код размера подшипника.

Как и в российской системе, в китайской последние две цифры, если они есть, следует умножать на 5. Таким образом можно определить внутренний диаметр подшипника в миллиметрах.

К примеру, характеристики подшипников, промаркированных как N315-EM/C3, будут такими:

  • N — это тип подшипника роликовый радиальный;
  • 315 — размеры ISO изделия;
  • буквы EM указывают в данном случае на то, что в подшипнике предусмотрен латунный сепаратор;
  • С3 — группа радиального зазора.

Магнитные подшипники

Такие устройства также достаточно часто используются в узлах механизмов. Принцип их работы основан на левитации, создаваемой магнитным полем. Подвес вала подшипники этой разновидности осуществляют бесконтактным способом. Работать устройства этого типа могут как от катушек, создающих поле, так и от постоянных магнитов. Последняя разновидность устройств используется не слишком часто. Дело в том, что такие системы, к сожалению, не отличаются стабильностью.

Подшипники качения: назначение

Преимуществами устройств подобной конструкции являются прежде всего:

  • низкий коэффициент трения;
  • малая чувствительность к качеству смазки;
  • дешевизна.

Минусами подшипников качения считаются в первую очередь слабая сопротивляемость ударным нагрузкам и невозможность работы на сверхвысоких скоростях. Также к недостаткам устройств этой разновидности относят ограничения в использовании в загрязненных средах.

Очень широкая сфера применения — это то, чем, безусловно, отличаются такие подшипники. Стандарты при их изготовлении соблюдаются в обязательном порядке и использовать их рекомендуется везде, где это возможно. На данный момент именно этот тип устройств является самым востребованным и распространенным.

Основное назначение подшипников качения, как и скольжения, уменьшать трение между движущимися частями механизма. Использоваться они, таким образом, могут в автомобильном и сельскохозяйственном машиностроении, при производстве бытовой техники, в металлургической промышленности. Очень часто подобные устройства применяются и при изготовлении перерабатывающего оборудования. Незаменимыми подшипники качения являются также и в самолетостроении, и даже в космической промышленности.

Где используются устройства скольжения

К основным преимуществам подшипников этого типа можно отнести:

  • небольшие размеры;
  • высокую скорость работы;
  • малую чувствительность к вибрационным и ударным нагрузкам.

Недостатками подшипников скольжения считаются:

  • более высокие, чем у устройств качения, потери на трение;
  • сложная смазочная система;
  • необходимость использования при изготовлении дефицитных материалов.

Применяют подшипники скольжения чаще всего там, где нельзя использовать устройства качения. К примеру, в том случае, если:

  • подшипник должен быть разъемным;
  • если на этот элемент в процессе эксплуатации приходится очень большая нагрузка;
  • на сверхбыстрых валах;
  • для работы в очень сильно загрязненных средах.

Чаще всего подшипники скольжения применяются в разного рода высокоскоростных машинах. Это могут быть, к примеру, центрифуги, шлифовальные станки и т. д. Также такие устройства используются на коленчатых валах в двигателях в том случае, если их конструкция должна быть разъемной.

Подшипники позволяют достичь ровного движения с низким трением между двумя поверхностями. Движение может быть как вращательным, так и линейным. Линейные подшипники рассматриваются в разделе линейных направляющих.

Основные типы подшипников, используемых при вращательных движениях – подшипники скольжения и подшипники качения. Устройство подшипника каждого типа отличаю свойственные ему особенности, которые определяют применимость его в разных случаях.

Самый древний тип подшипников – это подшипники скольжения, которые воспринимают нагрузку в процессе скольжения. В подшипниках качения нагрузка действует на множество элементов качения, заключенных в подшипнике. В обоих случаях для долгого срока службы подшипника необходимо соответствующее смазывание. Обычно подшипники скольжения стоят дешевле, чем подшипники качения таких же размеров, но подшипники качения выдерживают большие нагрузки и могут работать при более высоких скоростях.

Подшипники, воспринимающие нагрузку, направление которой перпендикулярно оси называются радиальные. Подшипники, воспринимающие нагрузку, направленную параллельно оси называются упорными.

Устройство подшипника скольжения не сложно – обычно это посаженный наглухо цилиндр, чаще стационарный, который заключает в себе и поддерживает движущийся элемент, который обычно называют валом. Подшипники скольжения также называют втулками скольжения.

В подшипниках качения нагрузку принимают на себя элементы качения, это могут быть шарики или ролики. Доступны роликовые подшипники для работы с радиальной и осевой нагрузками или их комбинации. Эти подшипники состоят из одного или двух колец шариков или роликов, расположенных между внутренним и наружным кольцами, таким образом, мы получим однорядные или двухрядные подшипники. Дорожки качения на внутреннем и наружном кольце направляют тела качения. Сепаратор используется, чтобы элементы качения держались на равных расстояниях друг от друга. Между телами качения и дорожками качения может быть зазор, чтобы компенсировать расширение материала при нагревании.

Классификация подшипников по типам на верхнем уровне базируется на виде трения – качения или скольжения. Подшипники качения делятся по типу тел качения на шариковые и роликовые. Шариковые подшипники бывают радиальными, упорными и радиально-упорными, в зависимости от нагрузки, для которой они предназначены. Роликовые подшипники классифицируются по форме роликов – цилиндрические, конические и т.д.

Подшипники качения

Обычно шариковые подшипники стоят дешевле, чем роликовые подшипники сходных размеров и обычно они используются для малых и незначительных нагрузок. У этих подшипников маленькая площадь контакта между дорожками и телами качения. Такая конструкция позволяет им работать на высоких скоростях с минимальным разрушением от усталости и меньшим нагревом, чем роликовые подшипники.

Радиальные шариковые подшипники

Два основных типа радиальных шариковых подшипников – это подшипники с канавкой для ввода шариков и подшипники без канавки.

Кроме того выпускаются специальные подшипники для специфических применений, например двухрядные подшипники, которые могут выдерживать более высокие радиальные нагрузки.

Другой тип – это самоустанавливающийся роликовый подшипник, позволяющий компенсировать несоосность между валом и корпусом.

Радиально-упорные подшипники

Эти подшипники созданы, чтобы выдерживать комбинированную нагрузку. Отношение радиальной и осевой нагрузки зависит от угла контакта между дорожками качения и осью подшипника.

Упорные подшипники

Упорные подшипники главным образом принимают упорную нагрузку и обеспечивают осевое положение вала. Этот тип подшипников отличается от других тем, что расстояние между кольцами перпендикулярно оси вращения. Упорные подшипники обычно состоят из двух дорожек качения, плоских или с углублением для тел качения, которые разделяет сепаратор с телами качения.

Роликовые подшипники

В роликовых подшипниках поверхность соприкосновения тел качения с внутренним и наружным кольцом больше, они в общем случае выдерживают большие нагрузки, чем сравнимые по размеру шариковые подшипники. Роликовые подшипники выдерживают нагрузки от средних до тяжелых и способны выдерживать ударные нагрузки. Они меньше подвержены деформации, чем шариковые подшипники, потому что давление на ролики при соприкосновении при равной нагрузке меньше из-за увеличенной зоны контакта.

Роликовые подшипники делятся на цилиндрические, игольчатые, сферические и конические.

Отдельно выделяют подшипниковые узлы, когда подшипник поставляется вмонтированным в корпус.

Более подробную информацию о каждом типе подшипников Вы можете найти в соответствующих разделах сайта.

Статья написана исключительно для ознакомления интернет-пользователей с основными разновидностями подшипников и некоторыми другими нюансами. Будет полезна студентам ВТУЗов и, возможно, молодым специалистам.

Мы не несем ответственности за непосредственный, опосредственный или непреднамеренный ущерб, нанесенный в результате использования информации представленной в данной статье.

Постоянный адрес статьи:

При любом использовании данного материала ссылка на него обязательна!

Вы также можете принять участие в написание статьи, оставив свои дополнения , замечания и комментарии на электронном адресе: Указание имени автора того или иного изменения гарантируется!

Старый вариант статьи: http://www.snr.com.ru/e/about_bearings/about_bearing.htm

Подшипники - это технические устройства , являющиеся частью опор вращающихся осей и валов. Они воспринимают радиальные и осевые нагрузки, приложенные к валу или оси, и передают их на раму, корпус или иные части конструкции. При этом они должны также удерживать вал в пространстве, обеспечивать вращение, качание или линейное перемещение с минимальными энергопотерями. От качества подшипников в значительной мере зависит коэффициент полезного действия, работоспособность и долговечность машины.

Рисунок 1 - Подшипники выполняют функции опор осей и валов

Рисунок 2 - Подшипник линейного перемещения

В настоящее время широко находят применение подшипники:

    контактные (имеющие трущиеся поверхности) - подшипники качени я и скольжения ;

    бесконтактные (не имеющие трущихся поверхностей) - магнитные подшипники .

По виду трения различают:

    подшипники скольжения , в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника;

    подшипники качения , в которых используется трение качения благодаря установке шариков или роликов между подвижным и неподвижным кольцами подшипника.

Рисунок 3 - Принципиальная схема опоры с подшипником скольжения

Подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется вкладыш или втулка из антифрикционного материала (часто используются цветные металлы), и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, который позволяет свободно вращаться валу. Для успешной работы подшипника зазор предварительно рассчитывается.

Рисунок 4 - Примеры смазочных канавок в подшипниках скольжения

В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает:

    жидкостным, когда поверхности вала и подшипника разделены слоем жидкого смазочного материала , непосредственного контакта между этими поверхностями либо нет, либо он происходит на отдельных участках;

    граничным – поверхности вала и подшипника соприкасаются полностью или на участках большой протяженности, причем смазочный материал в виде тонкой пленки ;

    сухим – непосредственный контакт поверхностей вала и подшипника по всей длине или на участках большой протяженности , жидкостной или газообразный смазочный материал отсутствует;

    газовое – поверхности вала и подшипника разделены слоем газа , трение минимально.

Таблица 1 - Виды смазки подшипников скольжения

Основные виды смазки

Смазочные материалы и материалы для создания смазочных покрытий. Варианты смазки

В наноструктурном состоянии: С, BN , MoS 2 и WS 2 ;

В виде нанокомпозиционных покрытий: WC / C , MoS 2 / C , WS 2 / C , TiC / C и наноалмаза;

В виде алмазных и алмазоподобных углеродистых покрытий: пленок из алмаза, гидрогенизированного углерода ( a - C : H ), аморфного углерода ( a -С), нитрида углерода ( C 3 N 4 ) и нитрида бора ( BN );

В виде твердых и сверхтвердых покрытий из VC , B 4 C , Al 2 O 3 , SiC , Si 3 O 4 , TiC , TiN , TiCN , AIN и BN ,

В виде чешуйчатых пленок из MoS 2 и графита;

В виде неметаллических пленок из диоксида титана, фтористого кальция, стекла, оксида свинца, оксида цинка и оксида олово,

В виде пленки из мягких металлов: свинца, золото, серебра, индия, меди и цинка,

В виде самосмазывающихся композитов из нанотрубок, полимеров, углерода, графита и металлокерамики,

В виде чешуйчатых пленок из углеродных составов: фторированного графита и фторид графита;

Углерод;

Полимеры: PTFE, нейлон и полиэтилен,

Жиры, мыло, воск (стеариновая кислота),

Керамика и металлокерамика.

Жидкостная

Гидродинамическая смазка: толстослойная и эластогидродинамическая;
- гидростатическая смазка;
- смазка под высоким давлением.

Тонкопленочная

Смешанная смазка (полужидкостная);

Граничная смазка.

Газодинамическая смазка

Существует большое количество конструктивных типов подшипников скольжения : самоустанавливающиеся, сегментные, самосмазывающиеся и т.д.

г )

а - внешний вид,

б - типичный шарнирный подшипник с поверхностью скольжения типа " металл-металл",

в - типичный шарнирный подшипник с самосмазывающейся поверхностью,

г - благодаря возможности самоустановки и восприятия больших нагрузок шарнирные подшипники находят применение в узлах тяжелой техники (например, в гидроцилиндре экскаватора)

Рисунок 5 - Шарнирные подшипники скольжения - одни из немногих типов подшипников скольжения, которые стандартизированы и выпускаются промышленностью серийно

Подшипники скольжения имеют следующие преимущества:

    допускают высокую скорость вращения;

    позволяют работать в воде, при вибрационных и ударных нагрузках;

    экономичны при больших диаметрах валов;

    возможность установки на валах, где подшипник должен быть разъемным (для коленчатых валов);

    допускают регулирование различного зазора и, следовательно, точную установку геометрической оси вала.

а - двигатель шпинделя HDD c подшипником качения,

б - двигатель шпинделя HDD c гидродинамическим подшипником скольжения,

в - расположение гидродинамического подшипника скольжения в HDD (Hard Disk Drive)

Рисунок 6 - Использование гидродинамических подшипников скольжения вместо подшипников качения в компьютерных HDD (Hard Disk Drive ) дает возможность регулировать скорость вращения шпинделейв широком диапазоне (до 20 000 об/мин), уменьшить шум и влияние вибраций на работу устройств, тем самым позволив увеличить скорость передачи данных, обеспечить сохранность записанной информации и срок службы устройства в целом (до 10 лет), а также - создать более компактные HDD ( 0,8-дюймовые )

Таблица 2 - Сравнение типов подшипников используемых в шпинделях HDD (Hard Disk Drive)

Требования к HDD

Требования к подшипнику

Подшипник качения

Гидродинамический подшипник

Типичное применение

из твердого металла

из пористого материала*

Большой объем хранения данных

Однократные биения

Персональный компьютер, сервер

Высокие скорости вращения

Низкий уровень шума

Низкий уровень шума

Пользовательский компьютер (нетбуки, SOHO)

Низкое потребление тока

Низкий крутящий момент

Устойчивость к ударам

Устойчивость к ударам

Мобильные компьютеры (ноутбуки)

Безотказность

Устойчивость к заклиниванию

Все компьютеры

Жесткость

Жесткость

Примечание:

* - данные приведены для NTN BEARPHITE;

** - обозначения: ++ - очень хорошо, + - хорошо, о - посредственно.

Недостатки подшипников скольжения:

    высокие потери на трение и, следовательно, пониженный коэффициент полезного действия (0,95... 0,98);

    необходимость в непрерывном смазывании;

    неравномерный износ подшипника и цапфы;

    применение для изготовления подшипников дорогостоящих материалов;

    относительно высокая трудоемкость изготовления.


Рисунок 7 - Принципиальная схема опоры с подшипником качения

Подшипники качения работают преимущественно при трении качения и состоят из двух колец, тел качения , сепаратора, отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба – дорожки качения, по которым при работе подшипника катятся тела качения.


а)


б)


в)

г) д)

а - с шариковыми телами качения, б - с короткими цилиндрическими роликами, в - с длинными цилиндрическими или игольчатыми роликами, г - с коническими роликами ,

д - с бочкообразными роликами

Примечание: приведены только некоторые виды тел качения

Рисунок 8 - В подшипниках качения применяются тела качения различных форм

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жесткости , применяются так называемые совмещенные опоры: дорожки качения выполняются непосредственно на валу или на поверхности корпусной детали. Некоторые подшипники качения изготовляют без сепаратора. Такие подшипники имеют большое число тел качения и, следовательно, большую грузоподъемность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

Рисунок 9 - Для сокращения радиальных размеров и массы используются “безобоемные” подшипники

Таблица 3 - Сравнение подшипников качения по эксплуатационным характеристикам

Тип подшипника

Высокая частота вращения

Восприятие перекоса

радиальная

осевая

комбинированная

Шариковый радиальный

Шариковый радиальный двухрядный сферический

Радиально-упорный однорядный шариковый

Радиально-упорные шариковые двухрядный и однорядный сдвоенный ("спина к спине")

Шариковый с четырехточечным контактом

С коротким цилиндрическими роликами без бортов на одном из колец

С коротким цилиндрическими роликами с бортами на противоположных сторонах наружного и внутреннего колец

Радиальный игольчатый

Сферический роликовый

Конический роликовый

Упорный шариковый

Упорный с коническими роликами

Упорно-радиальный роликовый сферический

Примечание:

* - обозначения: +++ - очень хорошо, ++ - хорошо, + - удовлетворительно, о - плохо, х - непригодно.

По сравнению с подшипниками скольжения имеют следующие преимущества:

    значительно меньше потери на трение, а, следовательно, более высокий КПД (до 0,995) и меньший нагрев;

    в 10...20 раз меньше момент трения при пуске;

    экономия дефицитных цветных материалов, которые чаще всего используются при изготовлении подшипников скольжения;

    меньшие габаритные размеры в осевом направлении;

    простота обслуживания и замены;

    меньше расход смазочного материала;

    невысокая стоимость вследствие массового производства стандартных подшипников;

    простота ремонта машины вследствие взаимозаменяемости подшипников.

e )

а - повреждение внутреннего кольца сферического роликового подшипника, вызванное чрезмерным натягом при посадке ;

б - фреттинг-коррозия внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием вибрации ;

в - повреждение внутреннего кольца радиального шарикового подшипника, вызванное действием чрезмерной осевой нагрузки ;

г - повреждение внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием чрезмерной радиальной нагрузки ;

д - следы ржавчины на поверхности ролика сферического роликового подшипника, вызванные попаданием воды внутрь подшипника ;

e - повреждение сепаратора роликового конического подшипника, вызываемое действием больших нагрузок и/или вибраций , и/или неправильным монтажом, и/ или смазыванием, и/или работойна высоких частотах вращения

Рисунок 10 - Повреждения подшипников качения

Недостатками подшипников качения являются:

    ограниченная возможность применения при очень больших нагрузках и высоких скоростях;

    непригодность для работы при значительных ударных и вибрационных нагрузках из-за высоких контактных напряжений и плохой способности демпфировать колебания;

    значительные габаритные размеры в радиальном направлении и масса;

    шум во время работы, обусловленный погрешностями форм;

    сложность установки и монтажа подшипниковых узлов;

    повышенная чувствительность к неточности установки;

    высокая стоимость при мелкосерийном производстве уникальных по размерам подшипников.

Рисунок 11 - Магнитный подшипник

Принцип работы магнитного подшипника (подвеса) основан на использовании левитации, создаваемой электрическими и магнитными полями. Магнитные подшипники позволяют без физического контакта осуществлять подвес вращающегося вала и его относительное вращение без трения и износа.

Рисунок 12 - Детская игрушка Левитрон наглядно демонстрирует, на что способны электромагнитные поля

Электрические и магнитные подвесы, в зависимости от принципа действия, принято разбивать на девять типов:

    Электростатические;

    на постоянных магнитах;

    активные магнитные;

    LC- резонансные;

    индукционные;

    кондукционные;

    диамагнитные;

    Сверхпроводящие;

    Магнитогидродинамические.


Рисунок 13 - Принципиальная схема типичной системы на основе активного магнитного подшипника ( АМП )

Наибольшую популярность в настоящее время получили активные магнитные подшипники. Активный магнитный подшипник (АМП) - это управляемое мехатронное устройство, в котором стабилизация положения ротора осуществляется силами магнитного притяжения, действующими на ротор со стороны электромагнитов, ток в которых регулируется системой автоматического управления по сигналам датчиков перемещений ротора. Полный неконтактный подвес ротора может быть осуществлен с помощью либо двух радиальных и одного осевого АМП, либо двух конических АМП. Поэтому система магнитного подвеса ротора включает в себя как сами подшипники, встроенные в корпус машины, так и электронный блок управления, соединенный проводами с обмотками электромагнитов и датчиками. В системе управления может использоваться как аналоговая, так и более современная цифровая обработка сигналов.


Рисунок 14 - Принципиальная схема управления типичной системы на основе активного магнитного подшипника

Основными преимуществами АМП являются:

    относительно высокая грузоподъемность;

    высокая механическая прочность;

    возможность осуществления устойчивой неконтактной подвески тела;

    возможность изменения жесткости и демпфирования в широких пределах;

    возможность использования при высоких скоростях вращения, в вакууме, высоких и низких температурах, стерильных технологиях...

а)

а - схема компрессора с подшипниками качения,

б - схема компрессора с магнитными подшипниками

Рисунок 15 - Применение магнитных подшипников дает возможность сделать конструкцию более жесткой , что , например , позволяет уменьшить динамический прогиб вала при высоких частотах вращения

В настоящие время для АМП идет создание международного стандарта, для чего был создан специальный комитет ISO TC108/SC2/WG7.

АМП могут эффективно применяться в следующем оборудовании :

    Турбокомпрессоры и турбовентиляторы;

    Турбомолекулярные насосы;

    Электрошпиндели (фрезерные, сверлильные, шлифовальные);

    Турбодетандеры;

    газовые турбины и турбоэлектрические агрегаты;

    инерционные накопители энергии.

Рисунок 16 - Шпиндели для вакуумных машин с активными магнитными подшипниками

Однако АМП требуют сложную и дорогостоящую аппаратуру управления, внешнего источника электроэнергии, что снижает эффективность и надежность всей системы. Поэтому идут активные работы по созданию пассивных магнитных подшипников (ПМП), которые не требуют сложных систем регулирования: например, на основе высокоэнергетических постоянных магнитов NdFeB (неодим-жедезо-бор).

Рисунок 17 - Пассивный магнитный подшипник на основе высокоэнергетических постоянных магнитов

Русское слово “подшипник ”, судя по названию, образовано от корня “шип” и приставки “под”. То есть подшипник - это нечто расположенное “под шипом”. Вот что говорит на этот счет классический словарь “Толковый словарь живого великорусского языка Владимира Даля”, содержащий много старинных и первоначальных значений тех или иных русских слов.

ПОДШИПНЫЙ - то, что под шипом. Подшипник м. в машинах, та часть подушки, на коей лежит шип оси или вала, упорная подкладка, на коей ось обращается.

ШИП - вообще, всякая насаженная, вставленная, припаянная или оттянутая ковкою часть вещи, для вставки в гнездо, для захвата, задержки и пр.

ШИПНИК - м. подшипник или гнездо, куда вкладывается шип оси.

Говоря современным инженерным языком, речь идет о гнезде или втулке, куда вставляется цапфа вала или оси (шип) и там вращается. Первоначально использовались втулки (подшипники скольжения), затем распространились подшипники качения. Однако название осталось, так как подшипник – по-прежнему деталь, которая располагается “под шипом”.

а - внешний вид ступицы колеса телеги,
б - конструкция ступицы колеса телеги

Рисунок 18 - На примере конструкции ступицы колеса телеги, которые широко использовались в России почти до середины XX века, можно понять, откуда произошло слово “подшипник” – нечто расположенное “под шипом”

В английском языке, например, слово “bearing ” (“подшипник”) берет свое начало от “to bear” в смысле “поддерживать” и “нести нагрузку”. То есть bearing - это нечто поддерживающее и несущее нагрузку от вращающейся оси.

Нередко слово “подшипник” пишут как “потшипник” , “подшибник” , “потшибник” , то есть с явной орфографической ошибкой. Это связано с тем, что при произношении согласные “б” и “п”, “д” и “т” довольно близки по звучанию. Поэтому, если человек незнаком с орфографией слова “подшипник” и не знает его происхождения, то старается применить правило “как слышится - так и пишется”. Но в данном случае применять такое правило нельзя.

Подшипники используются в различных уголках мира, и это слово звучит довольно часто из уст инженеров и техников. Однако “подшипники” на разных языках пишутся и звучат по-разному.

Таблица 4 - Слово “подшипники” на некоторых языках мира

Язык

Написание

Транскрипция на английском

Как звучит на русском

Английский

Bearings

[ be:ərɪŋs]

Бэрингс

Арабский

محامل

[ maha:məl ]

махамэль

Голландский

Lagers

Лагхес

Испанский

родамьентос

Итальянский

Cuscinetti

Кушинетти

Китайский

轴承

Корейский

베어링

Пёрин

Немецкий

вальтслагэ

Португальский

Rolamentos

Роламентос

Русский

подшипники

подшипники

Французский

Roulements

Рулемон

Хинди Wilfredo Morales. Permanent Magnetic Bearing for Spacecraft Applications. NASA/TM-2003-211996;
2) Ball and Roller Bearings. Сat. №2202. NTN, 2001; 3) Care andMaintenanceof Bearings. Сat. № 3017. NTN;
4) Henrik Strand. Design, Testing and Analysis of Journal Bearings for Construction Equipment. Department of Machine Design. Royal Institute of Technology. Stockholm, Sweden, 2005;

5) ISO Standardization for Active Magnetic Bearing Technology. Published 2005 ;

6) Kazuhisa Miyoshi. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey. NASA, 2007 ;
7) Needle Roller Bearings. Cat.№ 2300-VII/E. NTN;
8) Needle Roller Bearing Series General Catalogue. IKO;

10 ) Lei Shi, Lei Zhao, Guojun Yang и др. DESIGN AND EXPERIMENTS OF THE ACTIVE MAGNETIC
BEARING SYSTEM FOR THE HTR-10. 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY
. Beijing, CHINA, September 22-24, 2004;
11)
Linear Motion Rolling Guide Series General Catalogue , IKO ;
12 ) Precision Rolling Bearings. Cat .№ 2260-II/E. NTN; 13 ) Spherical Plain Bearings. Сat.№5301-II/E. NTN;

14) Torbjorn A. Lembke. Induction Bearings. A Homopolar Concept for High Speed Machines. Electrical Machines and Power Electronics. Department of Electrical Engineering. Royal Institute of Technology. Stockholm, Sweden, 2003 ;
15 ) Анурьев В.И. Справочник конструктора-машиностроителя. М.: Машиностроение, 2001;
16) Журавлев Ю. Н. Активные магнитные подшипники: Теория, расчет, применение. - СПб.: Политехника, 2003
;
17 ) Орлов П.И. Основы конструирования/Справочно-методическое пособие в 2-х книгах. М.: Машиностроение, 1988;

18) Черменский О.Н., Федотов Н.Н. Подшипники качения. Справочник-каталог. М: Машиностроение, 2003 ;

19) Толковый словарь живого великорусского языка Владимира Даля.

Основные типы подшипников

По принципу работы все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;
  • газодинамические подшипники;
  • гидростатические подшипники;
  • гидродинамические подшипники;
  • магнитные подшипники.

Основные типы, которые применяются в машиностроении - это подшипники качения и подшипники скольжения .

Подшипники качения

Устройство однорядного радиального шарикоподшипника:
1) внешнее кольцо; 2) шарик (тело качения); 3) сепаратор; 4) дорожка качения; 5) внутреннее кольцо.

Подшипники качения различных размеров и конструкций

Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба - дорожки качения, по которым при работе подшипника катятся тела качения.

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жёсткости применяют так называемые совмещённые опоры: дорожки качения при этом выполняют непосредственно на валу или на поверхности корпусной детали.

Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большое число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые - чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника.

Классификация

Классификация подшипников качения осуществляется на основе следующих признаков:

Механика

Подшипник представляет собой по существу планетарный механизм , в котором водилом является сепаратор, функции центральных колес выполняют внутреннее и наружное кольца, а тела качения заменяют сателлиты.

Частота вращения сепаратора или частота вращения шариков вокруг оси подшипника

где n 1 - частота вращения внутреннего кольца радиального шарикоподшипника,
D ω - диаметр шарика,
d m = 0,5(D+d) - диаметр окружности осей шариков.

Частота вращения шарика относительно сепаратора

Частота вращения сепаратора при вращении наружного кольца

где n 3 - частота вращения внешнего кольца радиального шарикоподшипника.

Для радиально-упорного подшипника

Из приведенных выше соотношений следует, что при вращении внутреннего кольца сепаратор вращается в ту же сторону. Частота вращения сепаратора зависит от диаметра D ω шариков при неизменном d m: она возрастает при уменьшении D ω и уменьшается при увеличении D ω .

В связи с этим разноразмерность шариков в комплекте подшипника является причиной повышенного износа и выхода из строя сепаратора и подшипника в целом.

При вращении тел качения вокруг оси подшипника на каждое из них действует нагружающая дополнительно дорожку качения наружного кольца центробежная сила

где m - масса тела качения,
ω с - угловая скорость сепаратора.

Центробежные силы вызывают перегрузку подшипника при работе на повышенной частоте вращения , повышенное тепловыделение (перегрев подшипника) и ускоренное изнашивание сепаратора. Всё это сокращает срок службы подшипника.

В упорном подшипнике, кроме центробежных сил, на шарики действует обусловленный изменением направления оси вращения шариков в пространстве гироскопический момент

Гироскопический момент будет действовать на шарики и во вращающемся радиально-упорном шарикоподшипнике при действии осевой нагрузки

где - полярный момент инерции массы шарика;
ρ - плотность материала шарика;
ω sp и ω с - соответственно угловая скорость шарика при вращении вокруг своей оси и вокруг оси вала (угловая скорость сепаратора).

Под действием гироскопического момента каждый шарик получает дополнительное вращение вокруг оси, перпендикулярной плоскости, образованной векторами угловых скоростей шарика и сепаратора. Такое вращение сопровождается изнашиванием поверхностей качения, и для предотвращения вращения подшипник следует нагружать такой осевой силой, чтобы соблюдать условие , где T f - момент сил трения от осевой нагрузки на площадках контакта шариков с кольцами.

Условное обозначение подшипников качения в России

Подшипники с российской маркировкой на выставке.

Чашечные подшипники, шарикоподшипники специального назначения и шарикоподшипниковые узлы.

Маркировка подшипников состоит из условного обозначения и стандартизована в соответствии ГОСТ 3189-89 и условного обозначения завода-изготовителя.

Основное условное обозначение подшипника состоит из семи цифр основного условного обозначения (при нулевых значениях этих признаков оно сокращается до 2 знаков) и дополнительного обозначения, которое располагается слева и справа от основного. При этом дополнительное обозначение, расположенное слева от основного, всегда отделено знаком тире (-), а дополнительное обозначение, расположенное справа всегда начинается с какой-либо буквы. Чтение знаков основного и дополнительного обозначения производится справа налево.

Схема 1 основного условного исполнения для подшипников с диаметром отверстия до 10 мм, кроме подшипников с диаметрами отверстий 0,6, 1,5 и 2,5 мм, которые обозначаются через дробь.

X XX X 0 X X
6 5 4 3 2 1
  1. диаметр отверстия, один знак;
  2. серия диаметров, один знак;
  3. знак ноль;
  4. тип подшипника, один знак;

Схема 2 основного условного исполнения для подшипников с диаметром отверстия от 10 мм и выше, кроме подшипников с диаметрами отверстий 22, 28, 32 и 500 мм, обозначаемые через дробь.

X XX X X XX
5 4 3 2 1
  1. диаметр отверстия, два знака;
  2. серия диаметров, один знак;
  3. тип подшипника, один знак;
  4. конструктивное исполнение, два знака;
  5. размерная серия (серия ширин или высот), один знак.

Знаки условного обозначения:

  • материал деталей;
  • конструктивные изменения;
  • температура отпуска;
  • смазочный материал;
  • требования к уровню вибрации.

Обозначение диаметра отверстия

Знак обозначающий диаметр отверстия схемы 1 с диаметром отверстия до 10 мм должен быть равен номинальному диаметру отверстия, кроме подшипников с диаметрами отверстий 0,6, 1,5 и 2,5 мм, которые обозначаются через дробь. Если диаметр отверстия подшипника - дробное число, кроме величин перечисленных ранее, то он имеет обозначение диаметра отверстия округлённого до целого числа, в этом случае в его условном обозначении на втором месте должна стоять цифра 5. Двухрядные сферические радиальные подшипники с диаметром отверстия до 9 мм сохраняют условное обозначение по ГОСТ 5720 .

Два знака обозначающие диаметр отверстия схемы 2 с диаметром отверстия от 10 мм до 500 мм если диаметр кратен 5, обозначаются частным от деления значения диаметра на 5.

Обозначение подшипников с диаметром отверстия 10, 12, 15 и 17 как 00, 01, 02, 03 соответственно. Если диаметр отверстия в диапазоне от 10 до 19 мм отличается от 10, 12, 15 и 17 мм, то ему присваивается обозначение ближайшего из указанных диаметров, при этом на третьем месте основного обозначения ставится цифра 9.

Диаметры отверстий 22, 28, 32 и 500 мм, обозначаются через дробь (например: 602/32 (д=32мм)

Диаметры отверстия, равные дробному или целому числу, но не кратное 5, обозначаются целым приближенным частным от деления значения диаметра на 5. В основное условное обозначение таких подшипников на третьем месте ставится цифра 9.

Подшипники имеющие диаметр отверстия 500 мм и более, внутренний диаметр обозначается как номинальный диаметр отверстия.

Обозначение размерных серий

Размерная серия подшипника - сочетание серий диаметров и ширин (высот), определяющее габаритные размеры подшипника. Для подшипников установлены следующие серии (ГОСТ 3478 ):

  • диаметров 0, 8, 9, 1, 7, 2, 3, 4, 5;
  • ширин и высот 7, 8, 9, 0, 1, 2, 3, 4, 5, 6.

Перечень серий диаметров указан в порядке увеличения размера наружного диаметра подшипника при одинаковом внутреннем диаметре. Перечень серий ширин или высот указан в порядке увеличения размера ширины или высоты.

Серия 0 в обозначении не указывается.

Нестандартные подшипники по внутреннему диаметру или ширине (высоте) имеют обозначение серии диаметра 6, 7или 8. Серия ширин (высот) в этом случае не проставляется.

Обозначение типов подшипников

Типы подшипников обозначаются согласно таблице 1 .

Таблица 1

Обозначение типов подшипников.
Тип подшипника Обозначение
Шариковый радиальный 0
Шариковый радиальный сферический 1
Роликовый радиальный с короткими цилиндрическими роликами 2
Роликовый радиальный сферический 3
Роликовый игольчатый или с длинными цилиндрическими роликами 4
Радиальный роликовый с витыми роликами 5
Радиально-упорный шариковый 6
Роликовый конический 7
Упорный или упорно-радиальный шариковый 8
Упорный или упорно-радиальный роликовый 9

Обозначение конструктивного исполнения

Конструктивные исполнения для каждого типа подшипников, согласно ГОСТ 3395 , обозначают цифрами от 00 до 99.

Знаки дополнительного обозначения

Слева от основного обозначения ставят знаки:

  • класс точности по ГОСТ 520-89 в порядке повышения точности:

0, 6, 5, 4, 2, Т - для шариковых и роликовых радиальных и шариковых радиально-упорных подшипников;
0, 6, 5, 4, 2 - для упорных и упорно-радиальных подшипников;
0, 6Х, 6, 5, 4, 2 - для роликовых конических подшипников.
Установлены также дополнительные классы точности 8 и 7 - ниже класса точности 0, изготовляются по заказу потребителей для применения в неответственных узлах.

  • группа радиального зазора по ГОСТ 24810-81 (1, 2…9; для радиально-упорных шариковых подшипников обозначают степень преднатяга 1, 2, 3);
  • момент трения (1, 2…9);
  • категорию подшипников (А, В, С).

Справа от основного обозначения ставят знаки:

  • материал деталей подшипников (например, Е - сепаратор из пластических материалов, Ю - детали подшипников из нержавеющей стали , Я - подшипники из редко применяемых материалов (твёрдые сплавы , стекло , керамика и т. д.), W - детали подшипников из вакуумированной стали, А - обозначение подшипника повышенной грузоподъёмности, Х,Х1 - кольца и тела качения или только кольца (в том числе одно кольцо) из цементируемой стали, Р,Р1 - детали подшипников из теплостойких (быстрорежущих сталей), Г,Г1 - сепаратор из чёрных металлов , Б,Б1 - сепаратор из безоловянистой бронзы , Д,Д1 - сепаратор алюминиевого сплава , Н,Н1 - кольца и тела качения или только кольца (в том числе одно кольцо) из модифицированной жаропрочной стали (кроме подшипников радиальных роликовых сферических двухрядных), Э,Э1 - детали подшипника из стали марки ШХ со спецприсадками (ванадий , кобальт и др.).
  • конструктивные изменения (например, К - конструктивные изменения деталей подшипников, М - роликовые подшипники с модифицированным контактом);
  • требования к температуре отпуска (Т, Т1, Т2, Т3, Т4, Т5);
  • смазочный материал закладываемый в подшипники закрытого типа при их изготовлении (например, С1, С2, С3 и т. д.);
  • требования по уровню вибрации (например, Ш1, Ш2, ШЗ и т. д.).

Подшипники скольжения

Коренной подшипник скольжения, коленвала двигателя с заливкой баббитом.

Подшипник скольжения - опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент - вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основе гидродинамической теории смазки .

При расчёте определяются: минимальная толщина смазочного слоя (измеряемая в мкм), давления в смазочном слое, температура и расход смазочных материалов. В зависимости от конструкции, окружной скорости цапфы , условий эксплуатации трение скольжения бывает сухим , граничным , жидкостным и газодинамическим . Однако даже подшипники с жидкостным трением при пуске проходят этап с граничным трением.

Смазка является одним из основных условий надёжной работы подшипника и обеспечивает: низкое трение, разделение подвижных частей, теплоотвод, защиту от вредного воздействия окружающей среды и может быть:

  • жидкой (минеральные и синтетические масла , вода для не металлических подшипников),
  • пластичной (на основе литиевого мыла и кальция сульфоната и др.),
  • твёрдой (графит , дисульфид молибдена и др.) и
  • газообразной (различные инертные газы , азот и др.).

Наилучшие эксплуатационные свойства демонстрируют пористые самосмазывающиеся подшипники, изготовленные методом порошковой металлургии . При работе пористый самосмазывающийся подшипник, пропитанный маслом, нагревается и выделяет смазку из пор на рабочую скользящую поверхность, а в состоянии покоя остывает и впитывает смазку обратно в поры.

Антифрикционные материалы подшипников изготавливают из твёрдых сплавов (карбид вольфрама или карбид хрома методом порошковой металлургии либо высокоскоростным газопламенным напылением), баббитов и бронз , полимерных материалов , керамики , твёрдых пород дерева (железное дерево).

Классификация

В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека .

Подшипники скольжения разделяют:

  • в зависимости от формы подшипникового отверстия
    • одно- или многоповерхностные,
    • со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения),
    • со/без смещением центра (для конечной установки валов после монтажа);
  • по направлению восприятия нагрузки
    • радиальные
    • осевые (упорные, подпятники),
    • радиально-упорные;
  • по конструкции
    • неразъемные (втулочные; в основном для I-1),
    • разъемные (состоящие из корпуса и крышки; в основном для всех, кроме I-1),
    • встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины);
  • по количеству масляных клапанов
    • с одним клапаном,
    • с несколькими клапанами;
  • по возможности регулирования
    • нерегулируемые,
    • регулируемые.

Ниже представлена таблица групп и классов подшипников скольжения (примеры обозначения: I-1, II-5) .

Группа Класс Способ смазки Вид трения Примерный коэффициент трения Назначение Область применения
I (несовершенная смазка) 1 Малое количество, подача непостоянная Граничное 0,1…0,3 Малые скорости скольжения и небольшие удельные давления Опорные ролики транспортеров , ходовых колес мостовых кранов
2 Обычно непрерывная Полужидкостное 0,02…0,1 Кратковременный режим с постоянным или переменным направлением вращения вала, малые скорости и большие удельные нагрузки
  • Линейные и формовочные машины
  • Кузнечно-прессовое оборудование
  • Грузоподъемные машины
3 Масляная ванна или кольца 0,001…0,02 Мало меняющиеся по величине и направлению усилия большие и средние нагрузки
  • Тяжелые станки
  • Мощные электрические машины
  • Тяжелые редукторы
  • Текстильные машины
Под давлением
  • Газовые двигатели
  • Тихоходные и судовые двигатели
II 4 Кольца, комбинированный или под давлением Жидкостное 0,0005…0,005 Малые окружные скорости валов, особо тяжелые условия работы при переменных по величине и направлению нагрузках
  • Электрические машины средней и малой мощности
  • Легкие и средние редукторы
  • Центробежные насосы и компрессоры
5 Под давлением 0,005…0,05 Слабонагруженные опоры с большими скоростями скольжения
  • Водяные турбины
  • Осевые вентиляторы

Достоинства

  • Надежность в высокоскоростных приводах
  • Способны воспринимать значительные ударные и вибрационные нагрузки
  • Бесшумность
  • Сравнительно малые радиальные размеры
  • Допускают установку разъемных подшипников на шейки коленчатых валов и не требуют демонтажа других деталей при ремонте
  • Простая конструкция в тихоходных машинах
  • Позволяют работать в воде
  • Допускают регулирование зазора и обеспечивают точную установку геометрической оси вала
  • Экономичны при больших диаметрах валов

Недостатки

  • В процессе работы требуют постоянного надзора за смазкой
  • Сравнительно большие осевые размеры
  • Большие потери на трение при пуске и несовершенной смазке
  • Большой расход смазочного материала
  • Высокие требования к температуре и чистоте смазки
  • Пониженный коэффициент полезного действия
  • Неравномерный износ подшипника и цапфы
  • Применение более дорогих материалов

Примеры

    Радиально-упорный шариковый подшипник

    Радиально-упорный шариковый подшипник с четырёхточечным контактом

    Самоустанавливающийся двухрядный радиальный шариковый подшипник

    Радиальный шариковый подшипник для корпусных узлов

    Радиальный роликовый подшипник

    Радиально-упорный роликовый подшипник (конический)

    Самоустанавливающийся радиальный роликовый подшипник

Подшипники, можно назвать как техническое устройство, которое служит в виде опоры, для вращающихся валов и осей. Подшипники способны принимать осевые и радиальные нагрузки, которые непосредственно воздействуют на вал или ось, с последующей передачей на корпус, раму или же иные части конструкции.

В тоже время, подшипник должен удерживать вал в пространстве, давать возможность валу свободно вращаться, качаться или способствовать свободному линейному перемещению и с минимальной, энергопотерей. Качество подшипника влияет на КПД (коэффициент полезного действия), работоспособность ну и конечно на долговечность самой машины.

В зависимости от принципа работы, подшипники делятся на такие типы как:

  • газостатические подшипники;
  • качения подшипники;
  • газодинамические подшипники;
  • подшипники скольжения;
  • гидростатические подшипники;
  • подшипники гидродинамические;
  • подшипники магнитные.

Но в машиностроении, в основном, применяют подшипники качения и скольжения. Подшипник качения, состоит из двух колец и сепаратора, который и отделяет между собой кольца. По внутренней части наружного кольца и наружной части внутреннего кольца, выполнен желобок, — дорожка для качения, по которым катаются тела качения, в то время когда подшипник находиться в работе.


Классификация подшипников качения проводится на основе таких признаков:

Тела качения бывают:

  • Шариковые;
  • Роликовые;

По восприятию нагрузки:

  • Радиальные подшипники;
  • Подшипники Радиально-упорные;
  • Упорно-радиальные подшипники;
  • Подшипники упорные;
  • Линейные подшипники;

По имеющему количеству рядов для тел качения:

  • Однорядные подшипники;
  • Двухрядные подшипники;
  • Многорядные подшипники;

По возможной способности компенсировать имеющие перекосы валов:

  • Самоустанавливающиеся;
  • Несамоустанавливающиеся.

Машин, в которых бы не было вращающихся частей, очень мало. Части, такие как колеса, рычаги и барабаны, валы и оси и т.д., в любом случае присутствуют. Такими сведениями, должны обладать непременно те, кто имеет дело с автомобильным транспортом. Как уже известно, любая машина требует за собой достаточного ухода, ну и, наверное, многие, не догадываются, что опорные подшипники, в обязательном порядке нужно менять! Есть и другой вид — подшипники упорные, которые очень широко применяют в энергетике, металлургии, горнодобывающей промышленности. Особенность такого вида подшипников является конструкция, которая позволяет повысить скоростные качества, но и в тоже время, она не позволяет выдерживать более высокие нагрузки.

Упорные подшипники имеют свое целевое предназначение. Очень часто их используют в колёсах автомобилей и центрифугах, также используют в шпинделях и червячных редукторах, и не только. Радиально упорный подшипник, широко применяют в разных промышленных сферах, таких как: машиностроении и автомобилестроении, химической промышленности ну и в станкостроении. Радиально-упорный подшипник качения имеет конструкцию, которая состоит из: кольца внутреннего и наружного, тел качения. Тела качения у этого вида подшипников, могут иметь две формы, форму шара или конического ролика.

По самим телам качения, радиально-упорные подшипники, можно поделить на, роликовые (конические) и шариковые. Такой тип подшипников, отличается способностью воспринимать сразу два вида нагрузки (комбинированные нагрузки), а именно, радиальные и осевые. Максимально допустимая величина нагрузки, осевая или радиальная, зависит напрямую от угла точки соприкосновения тел качения, с дорожками качения. Наибольшее распространение, в об­ще­тех­ни­че­ских от­рас­лях, имеют од­но­ряд­ные и двух­ряд­ные, возможно использования и подшипники ша­ри­ко­вые ра­ди­аль­но-упор­ные, которые имеют че­ты­рех­то­чеч­ный кон­так­т.

Од­но­ряд­ные и двух­ряд­ные ша­ри­ко­вые подшипники ра­ди­аль­но-упор­ные, могут выпускаться как от­кры­ты­ми, так и на оборот, за­щит­ны­ми шайбами ме­тал­ли­че­ски­ми ну или кон­такт­ны­ми уплот­не­ни­я­ми. Под­шип­ни­ки, которые имеют че­ты­рех­то­чеч­ный кон­так­т, имеют разъёмные внут­рен­ни­е или наружные коль­ца и пред­на­зна­че­ны они больше для вос­при­я­тия нагрузок осе­вых. Обычно, ша­ри­ко­вые ра­ди­аль­но-упор­ные под­шип­ни­ки, сепараторы которых вы­пол­ня­ют­ из стекло-наполненного по­ли­ами­да, так­же вполне воз­мож­ны выполнение со стальным штам­по­ван­ны­м сепаратором, ну или ла­тун­ны­м точеным.

Роликовые конические радиально-упорные подшипники, имеют способность одновременно воспринимать два вида нагрузки, радиальные и осевые. Но, имеют значительно низкую допустимую частоту вращения, по отношению к подшипникам, которые имеют ролики, выполненные в виде цилиндра (цилиндрические). Способность принимать осевые нагрузки определяют углом конусности, которое имеет внешнее кольцо. При увеличении угла конусности, действующая осевая нагрузка, значительно увеличивается за счет того что радиальная уменьшается. При использовании таких подшипников категорически не допускается перекос оси вала и гнёзд опор, в которые они устанавливаются.

Роликовые подшипники радиально-упорные конические могут быть изготовлены таких типов как:

  • 7000 – основная номенклатура;
  • 27000 – с большим углом конусности;
  • 97000 – двухрядные и
  • 77000 – четырехрядные.

Типы 7000 и 27000, предназначены и применяются для восприятия осевых и радиальных нагрузок но, односторонних. Подшипники такого типа, требуют регулировку осевых зазоров и по одинокий монтаж внешних колец, не зависимо от того как при установке, так и во время процесса эксплуатации. Подшипники позволяют монтаж с предварительным натягом, но, монтаж производится при условии, что вал размещен на двух подшипниках, конических. Подшипники, принадлежащие типу 97000, имеют способность одновременно воспринимать осевые нагрузки, как двухсторонние, так и радиальные.

При необходимости изменения радиального толи осевого зазора, в подшипнике путём подшлифовывания дистанционного кольца, которое установлено посередине внутренних колец. Радиальная нагрузка, максимально допустимая превышает в 1,7 раз, по сравнению с радиальной нагрузкой у соответствующего однорядного подшипника. Радиальная осевая нагрузка подшипников такого типа, превышать 40% не должна, в отличие от неиспользованной допустимой нагрузки радиальной. Подшипники типа 77000 четырёхрядные, имеют назначение для восприятия небольших двусторонних осевых и больших радиальных нагрузок. Радиальная нагрузка такого подшипника в 3 раза превышает нагрузку у соответственного однорядного подшипника. Нагрузка осевая, превышать 20%, не должна, в отличие от неиспользованной допустимой нагрузки, радиальной.

Для конических подшипников, сепараторы изготавливаются из стали, видами штамповки или точением. По телам качения центрируют сепараторы, и придают форму конических роликов. Упорные подшипники принимают осевую нагрузку. Хорошей способностью принимать осевую нагрузку обладают, шариковые упорно одинарные подшипники, правда, что только, в одном направлении, но двойные подшипники воспринимают нагрузку, осевую, которая способна действовать в обоих направлениях. В тех случаях, когда действует комбинированная нагрузка, на подшипник, в первую очередь стоит выбирать из радиально-упорных роликовых и шариковых подшипников с коническими роликами. Тогда при этом, данная величина нагрузки осевой, воспринимаемой подшипником, полностью зависит от угла точки соприкосновения. Для повышения осевой грузоподъёмности, увеличивают угла контакта в подшипнике.

В тех случаях когда, нагрузка осевая превалирует над нагрузкой радиальной, в таких случаях стоит применять, подшипники радиально-упорные шариковые, которые имеют четырехточечный контакт, также возможно применение упорно-радиальных роликовых сферических. В тех случаях, когда возникает несоосность вала, либо корпуса, это может быть вызвано технологической погрешностью, либо прогибом валов под воздействием рабочих нагрузок, стоит применять шариковые сферические либо роликовые подшипники. Также возможен вариант применения, упорно-радиального подшипника. Для узлов, которые имеют неточности, иногда применяют радиальные шариковые подшипники, которые имеют сферическую поверхность наружного кольца, установленных в сферические отверстия корпуса.

Типы подшипников условное обозначения

обозначения
Радиальные шариковые 0
Радиальные шариковые само установочные (сферические) 1
Роликовый радиальный с короткими цилиндрическими роликами 2
Радиальный роликовый со сферическими роликами 3
Радиальный роликовый с длинными цилиндрическими или игольчатыми роликами 4
Радиальный роликовый с витыми роликами 5
Радиально – упорный шариковый 6
Конический роликовый 7
Упорный шариковый и упорно – радиальный шариковый 8
Роликовый упорный и роликовый упорно — радиальный 9