Молекула одинаковым размером молекулу воды. A. Размеры молекул. Формы и размеры

Молекулярно-кинетическая теория идеальных газов

В физике для описания тепловых явлений используют два основных метода: молекулярно-кинетический (статистический) и термодинамиче­ский.

Молекулярно-кинетический метод (статистический) основан на представлении о том, что все вещества состоят из молекул, находящихся в хаотическом движении. Так как число молекул огромно, то можно, применяя законы статистики, найти определенные закономерности для всего вещества в целом.

Термодинамический метод исходит из основных опытных законов, получивших название законов термодинамики. Термодинамический метод подходит к изучению явлений подобно классической механике, которая базируется на опытных законах Ньютона. При таком подходе не рассматривается внутреннее строение вещества.

Основные положения молекулярно-кинетической теории

И их опытное обоснование. Броуновское движение.

Масса и размер молекул.

Теорию, которая изучает тепловые явления в макроскопических телах и объясняет зависимости внутренних свойств тел от характера движения и взаимодействия между частицами, из которых состоят тела, называют молекулярно-кинетической теорией ( сокращённо МКТ) или просто молекулярной физикой .

В основе молекулярно-кинетической теории лежат три важнейшие положения:

Согласно первому положению МКТ , все тела состоят из огромного количества частиц (атомов и молекул), между которыми есть промежутки .

Атом – это электрически нейтральная микрочастица, состоящая из положительно заряженного ядра и окружающей его электронной оболочки. Совокупность атомов одного вида называют химическим элементом . В естественном состоянии в природе встречаются атомы 90 химических элементов, наиболее тяжёлым из которых является уран. При сближении атомы могут объединяться в устойчивые группы. Системы из небольшого числа связанных друг с другом атомов называют молекулой . Например, молекула воды состоит из трёх атомов (рис.): двух атомов водорода (Н) и одного атома кислорода (О), поэтому её обозначают Н 2 О. Молекулыявляютсянаименьшими устойчивыми частицами данного вещества, обладающими его основными химическими свойствами. Например, наименьшая частица воды – это молекула воды, наименьшая частица сахара – молекула сахара.

Про вещества, состоящие из атомов, не объединённых в молекулы, говорят, что они находятся в атомарном состоянии ; в противном случае говорят о молекулярном состоянии . В первом случае мельчайшей частицей вещества является атом (например Не), во втором случае – молекула (например Н 2 О).

Если два тела состоят из одного и того же числа частиц, то говорят, что эти тела содержат одинаковое количество вещества . Количество вещества обозначается греческой буквой ν(ню) и измеряется в молях . За 1 моль принимают количество вещества в 12 г углерода. Так как в 12 г углерода содержится приблизительно 6∙10 23 атомов, то для количества вещества (т.е. числа молей) в теле, состоящем из N частиц, можно написать

Если ввести обозначения N A = 6∙10 23 моль -1 .

то соотношение (1) примет вид следующей простой формулы:

Таким образом, количество вещества - это отношение числа N молекул (атомов) в данном макроскопическом теле к числу N A атомов в 0,012 кг атомов углерода:

В 1 моле любого вещества содержится N A = 6,02·10 23 молекул. Число N A называют постоянной Авогадро . Физический смысл постоянной Авогадро заключается в том, что её значение показывает число частиц (атомов- в атомарном веществе, молекул –в молекулярном), содержащееся в 1 моле любого вещества.

Массу одного моля вещества называют молярной массой . Если молярную массу обозначить буквой μ, то для количества вещества в теле массой m можно записать:

Из формул (2) и (3) следует, что число частиц в любом теле можно определить по формуле:

Молярная масса определяется по формуле

М=М г ·10 -3 кг/моль

Здесь через М г обозначена относительная молекулярная (атомная) масса вещества, измеренная в а.е.м. (атомные единицы массы), которой в молекулярной физике принято характеризовать массу молекул (атомов).Относительную молекулярную массуМ г можно определить, если среднюю массу молекулы (m m) данного вещества разделить на 1/12 массы изотопа углерода 12 С:

1/12 m 12 C = 1а.е.м =1,66·10 -27 кг.

При решении задач эту величину находят с помощью таблицы Менделеева. В этой таблице указаны относительные атомные массы элементов. Складывая их в соответствии с химической формулой молекулы данного вещества, и получают относительную молекулярную М г. Например, для

углерода (С) М г =12·10 -3 кг/моль

воды (Н 2 О)М г =(1·2+16)=18·10 -3 кг/моль.

Аналогично определяется и относительная атомная масса .

Моль газа при нормальных условиях занимает объем V 0 = 22,4·10 23 м 3

Следовательно, в 1 м 3 любого газа при нормальных условиях (определяемых давлением Р=101325 Па =10 5 Па=1атм; температурой 273ºК (0ºС), объёмом 1 моля идеального газа V 0 =22,4 10 -3 м 3) содержится одинаковое число молекул:

Это число получило название постоянной Лошмидта.

Чётких границ молекулы (как и атомы) не имеют. Размеры молекул твёрдых тел можно ориентировочно оценить следующим образом:

где - объём приходящийся на 1 молекулу, - объём всего тела,

m и ρ – его масса и плотность, N – число молекул в нём.

Атомы и молекулы нельзя увидеть невооружённым глазом или с помощью оптического микроскопа. Поэтому сомнения многих учёных конца XIX в. в реальности их существования понять можно. Однако в XX в. ситуация стала иной. Сейчас с помощью электронного микроскопа, а также средств голографической микроскопии можно наблюдать изображение не только молекул, но даже отдельных атомов.

Данные рентгеноструктурного анализа показывают, что диаметр любого атома имеет порядок d = 10 -8 см (10 -10 м). Размеры молекул больше размеров атомов. Поскольку молекулы состоят из нескольких атомов, то чем больше количество атомов в молекуле, тем больше её размер. Размеры молекул лежат в пределах от 10 -8 см (10 -10 м) до 10 -5 см (10 -7 м).

Массы отдельных молекул и атомов очень малы, например абсолют­ное значение массы молекулы воды порядка 3·10 -26 кг. Массу отдельных молекул экспериментально определяют с помощью специального прибора – масс-спектрометра.

Кроме прямых экспериментов, позволяющих наблюдать атомы и молекулы, в пользу их существования говорит и множество других косвенных данных. Таковы, например, факты, касающиеся теплового расширения тел, их сжимаемости, растворения одних веществ в других и т.д.

Согласно второму положению молекулярно-кинетической теории , частицы непрерывно и хаотически (беспорядочно) движутся.

Это положение подтверждается существованием диффузии, испарения, давление газа на стенки сосуда, а также явлением броуновского движения.

Хаотичность движения означает, что у молекул не существует каких-либо предпочтительных путей и их движения имеют случайные направления.

Диффузия (от латинского diffusion – растекание, распространение) – явление, когда в результате теплового движения вещества происходит самопроизвольное проникновение одного вещества в другое (если эти вещества соприкасаются). Согласно молекулярно-кинетической теории, такое перемешивание происходит в результате того, что беспорядочно движущиеся молекулы одного вещества проникают в промежутки между молекулами другого вещества. Глубина проникновения зависит от температуры: чем выше температура, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия. Диффузия наблюдается во всех состояниях вещества – в газах, жидкостях и твёрдых телах. Наиболее быстро диффузия происходит в газах (именно поэтому так быстро распространяется запах в воздухе). В жидкостях диффузия происходит медленнее, чем в газах. Это объясняется тем, что молекулы жидкости расположены значительно гуще, и потому «пробираться» через них значительно труднее. Медленнее всего диффузия происходит в твёрдых телах. В одном из опытов гладко отшлифованные пластины свинца и золота положили одна на другую и сжали грузом. Через пять лет золото и свинец проникли друг в друга на 1мм. Диффузия в твёрдых телах обеспечивает соединение металлов при сварке, пайке, хромировании и т.п. Диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Например, именно благодаря диффузии кислород из лёгких проникает в кровь человека, а из крови - в ткани.

Броуновским движением называют беспорядочное движение взвешенных в жидкости или газе мелких частичек другого вещества. Это движение было открыто в 1827 г. английским ботаником Р.Броуном, который наблюдал в микроскоп движение цветочной пыльцы, взвешенной в воде. В наше время для таких наблюдений используют маленькие части краски гуммигут, которая не растворяется в воде. В газе броуновское движение совершают, например, взвешенные в воздухе частицы пыли или дыма. Броуновское движение частицы возникает потому, что импульсы, с которыми молекулы жидкости или газа действуют на эту частицу, не компенсируют друг друга. Молекулы среды (то есть молекулы газа или жидкости) движутся хаотично, поэтому их удары приводят броуновскую частицу в беспорядочное движение: броуновская частица быстро меняет свою скорость по направлению и по величине (рис.1).



В ходе изучения броуновского движения было обнаружено, что его интенсивность: а) увеличивается с ростом температуры среды; б) увеличивается при уменьшении размеров самих броуновских частиц; в)уменьшается в более вязкой жидкости и г) совершенно не зависит от материала (плотности) броуновских частиц. Кроме того, было установлено, что это движение универсально (поскольку наблюдается у всех веществ, взвешенных в распыленном состоянии в жидкости), непрерывно (в закрытом со всех сторон кювете, его можно наблюдать неделями, месяцами, годами) и хаотично (беспорядочно).

Согласно третьему положению МКТ , частицы вещества взаимодействуют друг с другом: притягиваются на небольших расстояниях и отталкиваются, когда эти расстояния уменьшаются.

Наличие сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания) объясняет существование устойчивых жидких и твёрдых тел.

Этими же причинами объясняется малая сжимаемость жидкостей и способность твёрдых тел сопротивляться деформациям сжатия и растяжения.

Силы межмолекулярного взаимодействия имеют электромагнитную природу и сводятся к двум типам: притяжению и отталкиванию. Эти силы проявляются на расстояниях, сравнимых с размерами молекул. Причиной этих сил является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – отрицательных электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. На рисунке 2.2 с помощью стрелок показано, что ядра атомов, внутри которых находятся положительно заряженные протоны, отталкиваются друг от друга, так же ведут себя и отрицательно заряженные электроны. А вот между ядрами и электронами действуют силы притяжения.

Зависимость сил взаимодействия молекул от расстояния между ними качественно объясняет молекулярный механизм появления сил упругости в твёрдых телах. При растяжении твёрдого тела частицы удаляются друг от друга. При этом появляются силы притяжения молекул, которые возвращают частицы в первоначальное положение. При сжатии твёрдого тела частицы сближаются на расстояния. Это приводит к увеличению сил отталкивания, которые возвращают частицы в первоначальное положение и препятствуют дальнейшему сжатию.

Поэтому при малых деформациях (в миллионы раз превышающих размер молекул) выполняется закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях закон Гука не действует

О справедливости этого положения свидетельствует сопротивляемость всех тел сжатию, а также (за исключением газов) –их растяжению.

Молекулы имеют размеры и разнообразные формы. Для наглядности будем изображать молекулу в виде шарика, воображая, что она охвачена сферической поверхностью, внутри которой находятся электронные оболочки ее атомов (рис. 4, а). По современным представлениям молекулы не имеют геометрически определенного диаметра. Поэтому за диаметр d молекулы условились принимать расстояние между центрами двух молекул (рис. 4, б), сблизившихся настолько, что силы притяжения между ними уравновешиваются силами отталкивания.

Из курса химии" известно, что килограмм-молекула (киломоль) любого вещества, независимо от его агрегатного состояния, содержит одинаковое количество молекул, называемое числом Авогадро, а именно N A = 6,02*10 26 молекул.

Теперь оценим диаметр молекулы, например воды. Для этого разделим объем киломоля воды на число Авогадро. Киломоль воды имеет массу 18 кг. Считая, что молекулы воды расположены плотно друг к другу и ее плотность 1000 кг / м 3 , можем сказать, что 1 кмоль воды занимает объем V = 0,018 м 3 . На долю одной молекулы воды приходится объем



Приняв молекулу за шарик и воспользовавшись формулой объема шара вычислим приблизительный диаметр, иначе линейный размер молекулы воды:


Диаметр молекулы меди 2,25*10 -10 м. Диаметры молекул газов того же порядка. Например, диаметр молекулы водорода 2,47*10 -10 м, углекислого газа - 3,32*10 -10 м. Значит, молекула имеет диаметр порядка 10 -10 м. На длине 1 см рядом могут расположиться 100 млн. молекул.

Произведем оценку массы молекулы, например сахара (C 12 H 22 О 11). Для этого надо массу киломоля сахара (μ = 342,31 кг / кмоль) разделить на число Авогадро, т. е. на число молекул в

Молярная масса воды:

Если молекулы в жидкости упакованы плотно и каждая из них вписывается в куб объемом V 1 с ребром d , то .

Объем одной молекулы: ,где: V m одного моля, N A - число Авогадро.

Объем одного моля жидкости: , где: М- ее молярная масса, - плотность.

Диаметр молекулы:

Вычисляя, имеем:


Относительная молекулярная масса алюминия Mr=27. Определить его основные молекулярные характеристики.

1.Молярная масса алюминия: M=Mr . 10 -3 M = 27 . 10 -3

Найти концентрацию молекул, гелия (М=4 . 10 -3 кг/моль) при нормальных условиях (р=10 5 Па, Т=273К), их среднеквадратичную скорость и плотность газа. С какой глубины в водоеме всплывает пузырек воздуха, если при этом его объем увеличивается в 2 раза?

Мы не знаем, одинаковой ли остается температура воздуха в пузырьке. Если она одинакова, то процесс всплытия описывается уравнением pV=const . Если изменяется, то уравнением pV/T=const .

Оценим, большую ли ошибку мы допускаем, если пренебрегаем изменением температуры.

Предположим, что мы имеем максимально неблагоприятный результат.Пусть стоит очень жаркая погода и температура воды на поверхности водоема достигает +25 0 С(298 К). На дне температура не может быть ниже +4 0 С (277К), так как этой температуре соответствует максимальная плотность воды. Таким образом, разность температур составляет 21К. По отношению к начальной температуре, эта величина составляет %%.Вряд ли мы встретим такой водоем, перепад температур между поверхностью и дном которого равен названной величине. К тому же, пузырек всплывает достаточно быстро и вряд ли за время всплытия он успеет полностью прогреться. Таким образом, реальная ошибка будет существенно меньшей и мы вполне можем пренебречь изменением температуры воздуха в пузырьке и воспользоваться для описания процесса законом Бойля-Мариотта: p 1 V 1 =p 2 V 2 , где: p 1 - давление воздуха в пузырьке на глубине h (p 1 = p атм. + rgh), p 2 - давление воздуха в пузырьке вблизи поверхности. p 2 = p атм.

(p атм + rgh)V =p атм 2V; ;

Стакан
Перевернутый вверх дном стакан погружают в водоем. На какой глубине стакан начнет тонуть?

В перевернутом вверх дном стакане закупорен воздух. В задаче утверждается, что стакан начинает тонуть только на некоторой глубине. По всей видимости, если его отпустить на глубине меньшей некоторой критической глубины, он всплывет (предполагается, что стакан расположен строго вертикально и не опрокидывается).

Уровень, находясь выше которого стакан всплывает, а ниже которого тонет, характеризуется равенством сил, приложенных к стакану с разных сторон.

Силами, действующими на стакан в вертикальном направлении, являются сила тяжести, направленная вниз, и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью жидкости, в которую помещен стакан, и объемом вытесненной им жидкости.

Сила тяжести, действующая на стакан, прямо пропорциональна его массе.

Из контекста задачи вытекает, что по мере погружения стакана, сила, направленная вверх, уменьшается. Уменьшение выталкивающей силы может происходить только за счет уменьшения объема вытесненной жидкости, так как жидкости практически несжимаемы и плотность воды у поверхности и на некоторой глубине одинакова.

Уменьшение объема вытесненной жидкости может происходить за счет сжатия воздуха в стакане, которое, в свою очередь, может идти за счет увеличения давления. Изменение температуры, по мере погружения стакана, можно не учитывать, если нас не интересует слишком высокая точность результата. Соответствующее обоснование приведено в предыдущем примере.

Связь давления газа и его объема при постоянной температуре выражается законом Бойля-Мариотта.

Давление жидкости действительно увеличивается с глубиной и передается во все стороны, в том числе и вверх, одинаково.

Гидростатическое давление прямо пропорционально плотности жидкости и ее высоте (глубине погружения).

Записав в качестве исходного уравнения уравнение, характеризующее состояние равновесия стакана, последовательно подставив в него найденные в ходе анализа задачи выражения и решив полученное уравнение относительно искомой глубины, приходим к тому, что для получения численного ответа нам необходимо знать значения плотности воды, атмосферного давления, массы стакана, его объема и ускорения свободного падения.

Все проведенные рассуждения можно отобразить следующим образом:

Поскольку в тексте задачи нет никаких данных, зададим их самостоятельно.

Дано:

Плотность воды r=10 3 кг/м 3 .

Атмосферное давление 10 5 Па.

Объем стакана 200 мл = 2 00 . 10 -3 л = 2 . 10 -4 м 3 .

Масса стакана 50 г = 5 . 10 -2 кг.

Ускорение свободного падения g = 10 м/с 2 .

Численное решение:

Подъем воздушного шара
На сколько градусов необходимо нагреть воздух внутри воздушного шара, чтобы он начал подниматься вверх?

Задача о подъеме воздушного шара так же, как и задача о тонущем стакане, может быть отнесена к классу статических задач.

Шар начнет подниматься так же, как и стакан тонуть, как только нарушится равенство сил, приложенных к этим телам и направленных вверх и вниз. На шар, так же, как и на стакан, действуют сила тяжести, направленная вниз и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью холодного воздуха, окружающего шар. Эта плотность может быть найдена из уравнения Менделеева-Клапейрона.

Сила тяжести прямо пропорциональна массе шара. Масса шара, в свою очередь, складывается из массы оболочки и массы горячего воздуха, находящегося внутри него. Масса горячего воздуха также может быть найдена из уравнения Менделеева-Клапейрона.

Схематически рассуждения могут быть отображены следующим образом:

Из уравнения можно выразить искомую величину, оценить возможные значения необходимых для получения численного решения задачи величин, подставить эти величины в полученное уравнение и найти ответ в численном виде.

В замкнутом сосуде находится 200 г гелия. Газ совершает сложный процесс. Изменение его параметров отражено на графике зависимости объема от абсолютной температуры.

1. Выразите массу газа в СИ.

2. Чему равна относительная молекулярная масса данного газа?

3. Чему равна молярная масса данного газа (в СИ)?

4. Чему равно количество вещества, содержащегося в сосуде?

5. Сколько молекул газа находится в сосуде?

6. Чему равна масса одной молекулы данного газа?

7. Назовите процессы на участках 1-2, 2-3, 3-1.

8. Определите объем газа в точках 1,2, 3, 4 в мл, л, м 3 .

9. Определите температуру газа в точках 1,2, 3, 4 в 0 С, К.

10. Определите давление газа в точках 1, 2, 3, 4 в мм. рт. ст. , атм, Па.

11. Изобразите данный процесс на графике зависимости давления от абсолютной температуры.

12. Изобразите данный процесс на графике зависимости давления от объема.

Указания к решению:

1. См. условие.

2. Относительная молекулярная масса элемента определяется с помощью таблицы Менделеева.

3. M=M r ·10 -3 кг/моль.

7. p =const - изобарический; V =const-изохорический; T =const - изотермический.

8. 1 м 3 = 10 3 л; 1 л = 10 3 мл. 9.T = t + 273. 10. 1 атм. = 10 5 Па = 760 мм.рт. ст.

8-10. Можно воспользоваться уравнением Менделеева-Клапейрона, либо газовыми законами Бойля-Мариотта, Гей-Люссака, Шарля.

Ответы к задаче

m = 0,2 кг
M r = 4
M = 4 · 10 -3 кг/моль
n = 50 моль
N = 3 · 10 25
m =6,7 · 10 -27 кг
1 - 2 - изобарический
2 - 3 - изохорический
3 - 1 - изотермический
мл л м 3
2 · 10 5 0,2
7 · 10 5 0,7
7 · 10 5 0,7
4 · 10 5 0,4
0 С К
мм.рт.ст. атм Па
7,6 · 10 3 10 6
7,6 · 10 3 10 6
2,28 · 10 3 0,3 · 10 6
3,8 · 10 3 0,5 · 10 6
Относительная влажность воздуха, находящегося в герметично закрытом сосуде при температуре t 1 =10 0 C, равна j 1 = 80%.

Муниципальное общеобразовательное учреждение

«Основная общеобразовательная школа №10»

Определение диаметра молекул

Лабораторная работа

Исполнитель: Масаев Евгений

7 класс «А»

Руководитель: Резник А. В.

Гурьевский район


Введение

В этом учебном году я начал изучать физику. Я узнал, что тела, которые нас окружают, состоят из мельчайших частиц – молекул. Меня заинтересовало, каковы размеры молекул. Из-за очень малых размеров молекулы нельзя увидеть невооруженным глазом или с помощью обыкновенного микроскопа. Я прочитал, что молекулы можно увидеть только с помощью электронного микроскопа. Ученые доказали, что молекулы разных веществ отличаются друг от друга, а молекулы одного и того же вещества одинаковы. Мне захотелось на практике измерить диаметр молекулы. Но к сожалению, в школьной программе не предусматривает изучение проблем такого рода, а рассмотреть её одному оказалось нелёгкой задачей и пришлось изучать литературу о методах определения диаметра молекул.


Глава I . Молекулы

1.1 Из теории вопроса

Молекула в современном понимании – это наименьшая частица вещества, обладающая всеми его химическими свойствами. Молекула способна к самостоятельному существованию. Она может состоять как из одинаковых атомов, например кислород О 2 , озон О 3 , азот N 2 , фосфор P 4 , сера S 6 и т. д., так и из различных атомов: сюда относятся молекулы всех сложных веществ. Простейшие молекулы состоят из одного атома: это молекулы инертных газов – гелия, неона, аргона, криптона, ксенона, радона. В так называемых высокомолекулярных соединениях и полимерах каждая молекула может состоять из сотен тысяч атомов.

Экспериментальное доказательство существования молекул первым наиболее убедительно дал французский физик Ж. Перрен в 1906 г. при изучении броуновского движения. Оно, как показал Перрен, является результатом теплового движения молекул – и ничем иным.

Сущность молекулы можно описать и с другой точки зрения: молекула – устойчивая система, состоящая из ядер атомов (одинаковых или различных) и окружающих электронов, причем химические свойства молекулы определяются электронами внешних оболочек в атомах. Атомы объединяются в молекулы в большинстве случаев химическими связями. Обычно такая связь создается одной, двумя или тремя парами электронов, которыми владеют сообща два атома.

Атомы в молекулах соединены друг с другом в определенной последовательности и определённым образом распределены в пространстве. Связи между атомами имеют различную прочность; она оценивается величиной энергии, которую необходимо затратить для разрыва межатомных связей.

Молекулы характеризуются определёнными размером и формой. Различными способами было определено, что в 1 см 3 любого газа при нормальных условиях содержится около 2,7x10 19 молекул.

Чтобы понять, насколько велико это число, можно представить, что молекула – это «кирпич». Тогда если взять количество кирпичей, равное числу молекул в 1 см 3 газа при нормальных условиях, и плотно уложить ими поверхность суши всего земного шара, то они покрыли бы поверхность слоем высотой 120 м, что почти в 4 раза превосходит высоту 10-этажного дома. Огромное число молекул в единице объёма указывает на очень малые размеры самих молекул. Например, масса молекулы воды m=29,9 x 10 -27 кг. Соответственно малы и размеры молекул. Диаметром молекулы принято считать минимальное расстояние, на которое им позволяет сблизиться силы отталкивания. Однако понятие размера молекулы является условным, так как на молекулярных расстояниях представления классической физики не всегда оправданы. Средний размер молекул порядка 10-10 м.

Молекула как система, состоящая из взаимодействующих электронов и ядер, может находиться в различных состояниях и переходить из одного состояния в другое вынужденно (под влиянием внешних воздействий) или самопроизвольно. Для всех молекул данного вида характерна некоторая совокупность состояний, которая может служить для идентификации молекул. Как самостоятельное образование молекула обладает в каждом состоянии определенным набором физических свойств, эти свойства в той или иной степени сохраняются при переходе от молекул к состоящему из них веществу и определяют свойства этого вещества. При химических превращениях молекулы одного вещества обмениваются атомами с молекулами другого вещества, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции других типов. Поэтому химия изучает вещества и их превращения в неразрывной связи со строением и состоянием молекул.

Обычно молекулой называют электрически нейтральную частицу. В веществе положительные ионы всегда сосуществуют вместе с отрицательными.

По числу входящих в молекулу атомных ядер различают молекулы двухатомные, трехатомные и т.д. Если число атомов в молекуле превосходит сотни и тысячи, молекула называется макромолекулой. Сумма масс всех атомов, входящих в состав молекулы, рассматривается как молекулярная масса. По величине молекулярной массы все вещества условно делят на низко- и высокомолекулярные.

1.2 Методы измерения диаметра молекул

В молекулярной физике главные «действующие лица» - это молекулы, невообразимо маленькие частицы, из которых состоят все на свете вещества. Ясно, что для изучения многих явлений важно знать, каковы они, молекулы. В частности, каковы их размеры.

Когда говорят о молекулах, их обычно считают маленькими упругими твердыми шариками. Следовательно, знать размер молекул, значит знать их радиус.

Несмотря на малость молекулярных размеров, физики сумели разработать множество способов их определения. В «Физике 7» рассказывается о двух из них. В одном используется свойство некоторых (очень немногих) жидкостей растекаться в виде пленки толщиной в одну молекулу. В другом размер частицы определяется с помощью сложного прибора - ионного проектора.

Строение молекул изучают различными экспериментальными методами. Электронография, нейтронография и рентгеновский структурный анализ позволяют получать непосредственную информацию о структуре молекул. Электронографии, метод, исследующий рассеяние электронов на пучке молекул в газовой фазе, позволяет рассчитать параметры геометрической конфигурации для изолированных сравнительно простых молекул. Нейтронография и рентгеновский структурный анализ ограничены анализом структуры молекул либо отдельных упорядоченных фрагментов в конденсированной фазе. Рентгенографические исследования кроме указанных сведений дают возможность получить количественные данные о пространственном распределении электронной плотности в молекулах.

Спектроскопические методы основаны на индивидуальности спектров химических соединений, которая обусловлена характерным для каждой молекулы набором состояний и отвечающих им энергетических уровней. Эти методы позволяют проводить качественный и количественный спектральный анализ веществ.

Спектры поглощения или испускания в микроволновой области спектра позволяют изучать переходы между вращательными состояниями, определять моменты инерции молекул, а на их основе - длины связей, валентные углы и другие геометрические параметры молекул. Инфракрасная спектроскопия исследует, как правило, переходы между колебательно-вращательными состояниями и широко используется для спектрально-аналитических целей, поскольку многие частоты колебаний определенных структурных фрагментов молекул являются характеристическими и слабо меняются при переходе от одной молекулы к другой. В то же время инфракрасная спектроскопия позволяет судить и о равновесной геометрической конфигурации. Спектры молекул в оптическом и ультрафиолетовом диапазонах частот связаны главным образом с переходами между электронными состояниями. Результатом их исследований являются данные об особенностях потенциальных поверхностей для различных состояний и значения молекулярных постоянных, определяющих эти потенциальные поверхности, также времена жизни молекул в возбужденных состояниях и вероятности переходов из одного состояния в другое.

О деталях электронного строения молекул уникальную информацию дают фото- и рентгеноэлектронные спектры, а также оже-спектры, позволяющие оценить тип симметрии молекулярных орбиталей и особенности распределения электронной плотности. Широкие возможности для изучения отдельных состояний молекул открыла лазерная спектроскопия (в различных диапазонах частот), отличающаяся исключительно высокой селективностью возбуждения. Импульсная лазерная спектроскопия позволяет анализировать строение короткоживущих молекул и их превращения в электромагнитное поле.

Разнообразную информацию о строении и свойствах молекул дает изучение их поведения во внешних электрических и магнитных полях.

Существует, однако, очень простой, хотя и не самый точный, способ вычисления радиусов молекул (или атомов) Он основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N .

Число молекул в теле массой m равно, как известно,

, где М - молярная масса вещества N A - число Авогадро. Отсюда объем V 0 одной молекулы определяется из равенства .

В это выражение входит отношение объема вещества к его массе. Обратное же отношение

Размер молекулы является величиной условной. Его оценивают так. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния d (рис. 1).

Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы d (при этом считают, что молекулы имеют сферическую форму).

В настоящее время существует много методов определения размеров молекул. Самый простой, хотя и не самый точный, состоит в следующем. В твердых и жидких телах молекулы расположены очень близко одна к другой, почти вплотную. Поэтому можно считать, что объем V , занимаемый телом некоторой массы m , приблизительно равен сумме объемов всех его молекул.

Тогда объем одной молекулы будет \(V_{0} =\frac{V}{N},\) где V - объем тела, \(N=\frac{m}{M} \cdot N_{A}\) - число молекул в теле. Следовательно,

\(V_{0} =\frac{V\cdot M}{m\cdot N_{A}}.\)

Так как \(\frac{m}{V} =\rho,\) где ρ - плотность вещества, то

\(V_{0} =\frac{M}{\rho \cdot N_{A}}.\) (6.5)

Считая, что молекула - маленький шарик, диаметр которого d = 2r , где r - радиус, имеем

\(V_{0} = \frac{4}{3} \pi \cdot r^{3} = \frac{\pi \cdot d^{3}}{6}.\)

Подставив сюда значение V 0 (6.5), получим

\(\frac{\pi \cdot d^{3}}{6} = \frac{M}{\rho \cdot N_{A}}.\)

\(d = \sqrt[{3}]{\frac{6M}{\pi \cdot \rho \cdot N_{A}}}.\)

Так, для воды

\(d = \sqrt[{3}]{\frac{6\cdot 18\cdot 10^{-3}}{3,14 \cdot 10^{3} \cdot 6,02 \cdot 10^{23}}} = 3,8 \cdot 10^{-10}\) м.

Размеры молекул различных веществ неодинаковы, но все они порядка 10 -10 м, т.е. очень малы.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 125-126.