Как работает косой мост в инверторе. Сварочный инвертор бармалей. Описание схемы инвертора

Сварочный инвертор – это достаточно популярный аппарат, который является необходимым и в домашнем хозяйстве, и на промышленном предприятии. Это не удивительно, ведь те источники питания, которыми пользовались раньше (преобразователи, трансформаторы, выпрямители), обладали многими недостатками. Среди них можно назвать массу и габариты, большую энергоемкость, но маленький диапазон регулирования режима сварки и низкую частоту преобразования. Сделав своими руками сварочный инвертор на тиристорах, вы получите мощный блок питания для необходимых работ. Также это поможет существенно сэкономить вам средства, хотя все равно потребует определенных трудовых и материальных затрат.

Сварочный инвертор: особенности и функции аппарата

Работа инвертора заключается в том, чтобы преобразовывать переменный сетевой ток в его постоянный высокочастотный аналог.

Это происходит в несколько этапов. К выпрямительному блоку из сети идет ток. Там, после трансформации, напряжение из переменного становится постоянным. А инвертор производит обратное преобразование, то есть поступающее постоянное напряжение снова становится переменным, но с уже более высокой частотой. После этого напряжение понижается трансформатором, через выходной выпрямитель происходит модификация этого параметра в высокочастотное постоянное напряжение.

Конструкция сварочного инвертора и его особенности

Благодаря тому что в конструкции аппарата отсутствуют тяжелые детали, он является очень компактным и легким. В нее входят следующие составляющие:

Устройство простого инвертора с перекрестными связями.

  • инвертор;
  • сетевой и выходной выпрямители;
  • дроссель;
  • высокочастотный трансформатор.

Даже начинающие сварщики могут работать с такими аппаратами. Их применяют как в быту, так и в строительной сфере или в автосервисах. Благодаря тому что присутствует регулировка рабочих режимов, варить можно и тонкие, и толстые металлы. А повышенные условия горения дуги и формирования сварного шва дают вам возможность варить сварочными инверторами любые сплавы, черные и цветные металлы, используя все возможные технологии их сварки.

Преимущества использования инвертора

В области сварного оборудования такие аппараты пользуются особым спросом из-за множества своих преимуществ и достоинств. Сделав инвертор своими руками, вы получите:

  • возможность варить сложные цветные металлы и конструкционные стали;
  • защиту от перегревов, колебаний сетевого напряжения, перегрузов по току;
  • высокую стабильность сварного тока даже при том, что напряжение может колебаться в сети;
  • качественно сформированный шов;
  • при сварке практически не будет разбрызгивания;
  • горение дуги будет стабилизированным в заданном ключе, даже если наблюдается внешнее неблагоприятное воздействие;
  • многие другие полезные в работе функции.

Схемы инвертора своими руками

Взяв за основу то, как строится схема и как управляется сам процесс инверторного преобразования, выделяют несколько видов аппаратов, которые являются самыми распространенными в использовании. Варианты полного моста и полумоста относятся к двум двухтактным схемам, а «косой» мост – к однотактной. Схема полного моста, которую называют двухтактной, работает с двухполярными импульсами. Они подаются на ключевые транзисторы (которые являются парными), а те запирают и открывают электрическую цепь.

Схема инвертора “косой” мост.

Полумостовая схема будет отличаться от предыдущего варианта тем, что потребление тока у нее повышенное. Как ключи выступают транзисторы, работающие по той же двухтактной модели. На каждый из них подается половина входного напряжения сети. Мощность инвертора, в сравнении по току с полным мостом, составляет половину значения. Подобная схема имеет свои преимущества в маломощных устройствах. К тому же можно использовать группу транзисторов, а не один очень мощный.

Последний вариант – «косой» мост. Это инверторы, которые работают по однотактному принципу. Тут вы будете иметь дело с однополярными импульсами. Одновременное открытие транзисторных ключей исключит возможность короткого замыкания. Но среди недостатков этой схемы выделяют подмагничивание магнитопровода трансформатора.

Посмотрите на одну из стандартных схем инвертора. Это конструкция по проекту Ю.Негуляева. Чтобы собрать такой аппарат в домашних условиях, потребуется ваше желание, готовность к работе и необходимая элементная база, которую вы сможете либо найти на радиорынке, либо выпаять из старой бытовой техники.

Инструкция по сборке аппарата

Стандартная схема инвертора по проекту Ю.Негуляева

Возьмите 6-миллиметровую плиту из дюралюминия. Присоедините к ней все отдающие тепло проводники и провода. Учтите, что здесь провод не нужно опоясывать термоизолирующим материалом. Используя старую схему (к примеру, компьютера), вам не придется отдельно искать транзисторы и тиристоры.

Далее подготовьте специальный высокомощный вентилятор (вы можете воспользоваться даже автомобильным радиатором). Он будет обдувать все, включая резонансный дроссель. Не забудьте прижать последний к вашей основе с помощью прокладочного уплотнителя.

Для изготовления самого дроссельного прибора возьмите шесть медных сердечников. Их можно найти на рынке или сделать самому из деталей ненужного старого телевизора. Прижмите диоды к основанию схемы, а потом присоедините к ним стабилизаторы напряжения и изоляционные уплотнители.

Ставя трансформатор, заизолируйте проводниковые пучки с помощью изоленты или фторопластовой полосы. Разведите проводники в разные стороны, чтобы они не контачили и не вызывали сбоев в работе. На полевом транзисторе понадобится провести монтаж силового поля, чтобы продлить работоспособность вашего инвертора. Для этого возьмите медный провод 2-миллиметрового сечения. Залужив его, обмотайте в несколько слоев обычной ниткой. Так вы защитите ваш проводник от разных повреждений и при пайке, и при сварке. Чтобы закрепить монтаж, используйте изолирующие пяточки. Так вы еще и перенесете на них нагрузку с транзисторов.

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Наиболее часто при построении сварочных инверторов применяют три основных типа высокочастотных преобразователей: полумост, ассиметричный мост (или "косой мост") и полный мост. Под видом полумоста и полного моста, являются резонансные преобразователи. В зависимости от системы управления выходными параметрами, преобразователи бывают с ШИМ (широтно-импульсная), с ЧИМ (частотная регулировка), с фазовой регулировкой, и комбинациями из этих трёх. Все эти типы преобразователей имеют свои достоинства и свои недостатки. Начнем с полумоста с ШИМ. Блок схема такого преобразователя показана на Рис.3.

Это самый простой преобразователь из семейства двухтактников, но от этого не менее надёжный. Недостатком этой схемы является то, что "раскачка" напряжения на первичной обмотке силового трансформатора, равна половине напряжения питания. Но с другой стороны, этот факт является плюсом, можно применить сердечник меньшего размера, без опасения захода в режим насыщения.

Для инверторов небольшой мощности (2-ЗкВт), такой преобразователь весьма перспективен. Но ШИМ управление требует особой тщательности при монтаже силовых цепей, для управления силовыми транзисторами необходимо ставить драйверы. Транзисторы такого полумоста работают в режиме жёсткого переключения, поэтому к управляющим сигналам предъявляются повышенные требования.

Обязательно наличие "мёртвого времени" между двумя противофазными импульсами, отсутствие паузы, или недостаточная её длительность, всегда приводит к возникновению сквозного тока через силовые транзисторы.

Последствия легко предсказуемы - выход транзисторов из строя. Весьма перспективным видом полумостового преобразователя, является резонансный полумост. Блок схема такого полумоста приведена на Рис.4.


Ток протекающий через силовые цепи имеет форму синусоиды, а это снимает нагрузку с фильтрующих конденсаторов.

При таком построении силовые ключи не нуждаются в драйверах! Достаточно обыкновенного импульсного трансформатора, чтобы переключить силовые транзисторы. Качество управляющих импульсов не столь существенно, как в схеме с ШИМ, хотя пауза ("мёртвое время") должна быть.

Ещё один плюс, эта схема позволяет обойтись без токовой защиты и форма ВАХ (вольт - амперная характеристика) имеет сразу падающий вид и не нуждается в параметрическом формировании.

Выходной ток ограничен только индуктивностью намагничивания трансформатора и может достигать значительных величин при КЗ, это необходимо учитывать при выборе выходных диодов, но это свойство положительно влияет на поджиг и горение дуги!

Обычно выходные параметры регулируются изменением частоты, однако применение фазовой регулировки дает гораздо больше плюсов и является наиболее перспективной для сварочного инвертора, так как позволяет обойти такое неприятное явление, как совпадение резонанса с режимом КЗ, да и диапазон регулировки выходных параметров намного шире. Фазовая регулировка позволяет менять выходной ток практически от 0 до Imax.

Следующая схема - ассиметричный мост, или "косой мост". Блок схема такого преобразователя показана на Рис.5.


Ассиметричный мост - однотактный, прямоходовой преобразователь.

Преобразователь такой конфигурации очень популярен, как у производителей сварочных инверторов, так и у радиолюбителей. Первые сварочные инверторы были построены именно, как "косой мост". Простота и надёжность, широкие возможности для регулировки выходного тока, помехозащищённость - всё это привлекает разработчиков сварочных инверторов до сих пор.

И хотя недостатки такого преобразователя довольно существенны, это большие токи через транзисторы, высокие требования к форме управляющих импульсов, что подразумевает использование мощных драйверов для управления силовыми ключами, высокие требования к монтажу силовых цепей, большие импульсные токи предъявляют высокие требования к конденсаторам входного фильтра, электролитические конденсаторы очень не любят большие импульсные токи. Для удержания транзисторов в ОДЗ (области допустимых значений) требуются RCD цепочки (снабберы).

Но, несмотря на все эти недостатки и малый КПД, "косой мост" до наших дней применяется в сварочных инверторах. Транзисторы Т1 и Т2 работают синфазно, вместе открываются и вместе закрываются. Энергия накапливается не в трансформаторе, а в выходной катушке индуктивности дросселя. Рабочий цикл не превышает 50%, именно поэтому для получения одинаковой мощности с мостовым преобразователем, требуется двойной ток через транзисторы. Более детально работа такого преобразователя будет рассмотрена на примере реального сварочного инвертора.

Следующий тип преобразователя - полный мост с ШИМ. Классический двухтактный преобразователь! Блок схема полного моста приведена на Рис.6.


Мостовая схема даёт возможность получить мощность в 2 раза больше, чем полумост, и в 2 раза больше чем "косой мост", при тех же величинах токов и потерь на переключение. Это объясняется тем, что "раскачка" напряжения первичной обмотки силового трансформатора, равна напряжению питания.

Соответственно для получения одинаковой мощности, например с полумостом (в котором напряжение раскачки равно 0,5U пит.), потребуется ток через транзисторы в 2 раза меньше! Транзисторы полного моста работают по диагонали, когда Т1 - ТЗ открыты, Т2 - Т4 закрыты, и наоборот. Трансформатор тока отслеживает амплитудное значение тока, протекающего через включенную диагональ. Регулировать выходной ток такого преобразователя можно двумя способами:

1) изменять длительность управляющего импульса, оставляя неизменным напряжение отсечки;

2) изменять уровень напряжения отсечки приходящего с токового трансформатора, оставляя неизменным длительность управляющих импульсов.

Оба этих способа позволяют изменять выходной ток в достаточно широких пределах. Недостатки и требования у полного моста с ШИМ, точно такие, как и у полумоста с ШИМ. (См. выше). И наконец, рассмотрим наиболее перспективную схему ВЧ преобразователя, для сварочного инвертора - резонансный мост. Блок схема представлена на Рис.7.


Как может показаться на первый взгляд, схема резонансного моста не сильно отличается от моста с ШИМ, и это действительно так. Практически дополнительно введена только LC резонансная цепочка, включенная последовательно с силовым трансформатором. Однако введение этой цепочки полностью меняет процессы перекачки мощности. Уменьшаются потери, увеличивается КПД, на порядки снижается уровень электромагнитных помех, понижается нагрузка на входные электролиты. Как видите можно полностью убрать защиту по току, драйверы силовых транзисторов могут понадобиться лишь в том случае, если применяются MOSFET транзисторы с ёмкостью затвора больше 5000pF. Для IGBT транзисторов достаточно одного импульсного трансформатора.

Управлять выходным током резонансного преобразователя можно двумя способами, это частотным и фазовым. Оба они упоминались раньше, в описании резонансного полумоста. И последний тип ВЧ преобразователя - полный мост с дросселем рассеяния. Его схема практически ничем не отличается от схемы резонансного моста (полумоста), точно так включена LC цепочка последовательно с трансформатором, только она не является резонансной. С =22мкфх63В работает как симметрирующий конденсатор, a L дросселя, как реактивное сопротивление, величина которого линейно зависит от частоты. Управление такого преобразователя - частотное. С увеличением частоты - сопротивление L, увеличивается. Ток через силовой трансформатор уменьшается. Просто и надёжно. Большинство промышленных инверторов построены на таком принципе регулировки и ограничения выходного тока.

СВАРОЧНЫЙ АППАРАТ СВОИМИ РУКАМИ

ОБЗОР СХЕМ СВАРОЧНЫХ ИНВЕРТОРОВ И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ

Начнем с довольно популярной схемы сварочного инвертора, довольно часто именуемой схемой Брамалея. Уж не знаю почему этой схеме приклеили данное имя, но в интернете довольно часто упоминается сварочный аппарат Бармалея.
Вариантов схемы инвертора Бармалея нашлось несколько, но топология у них практически одинаковая - прямоходовой однотактный преобразователь (довольно часто именуемый "косой мост", почему то), управляемый контроллером UC3845.
Поскольку этот контроллер в данной схеме является основным, то с принципа его работы и начнем.
Микросхема UC3845 выпускается несколькими производителями и состоит в серии микросхем UC1842, UC1843, UC1844, UC1845, UC2842, UC2843, UC2844, UC2845, UC3842, UC3843, UC3844, и UC3845.
Микросхемы отличаются друг от друга напряжением питания при котором стартуют и самоблокируются, температурным диапазоном работы, а так же небольшими схемотехническими изменениями, позволяющими длительность управляющего импульса в микросхемах ХХ42 и ХХ43 доводить до 100%, а у микросхем серии ХХ44 и ХХ45 длительность управляющего импульса не может превышать 50%. Цоколевка микросхем одинаковая.
В микросхему интегрирован дополнительный стабилитрон на 34...36 В (зависит от производителя), что позволяет не переживать за превышение напряженияпитания при использовании микросхемы в БП с ОЧЕНЬ широким диапазоном питающих напряжений.
Микросхемы выпускаются в нескольких типах корпусов, что существенно расширяет сферу использования

Микросхемы изначально проектировались как контроллеры для управления силовым ключом однотактного блока питания средней мощности и данный контроллер оснастили всем необходимым для увеличения его собственной живучести и живучести управляемого им блока питания. Микросхема может работать до частот 500 кГц, выходной ток оконечного каскада драйвера способен развить ток до 1 А, что в сумме позволяет проектировать довольно компактные блоки питания. Блок схема микросхемы приведена ниже:

На блоксхеме как раз красным выделен дополнительный триггер, который не позволяет длительности выходного импульса превысить 50%. Этот триггер установлен только в серии UCx844 и UCx845.
В микросхемах, выполненных в корпусах с восьмью выводами некоторые выводы объеденены внутри микросхемы, например VC и Vcc , PWRGND и GROUND .

Типовая схема импульсного блока питания на UC3844 приведена ниже:

Данный блок питания имеет косвенную стабилизацию вторичного напряжения, поскольку контролирует свое собственное питание, формируемое обмоткой NC. Это напряжение выпрямляется диодом D3 и служит для питания самой микросхемы после ее запуска, а пройдя делитель на R3 попадает на вход усилителя ошибки, который и управляет длительностью импульсов управления силовым транзистором.
При увеличении нагрузки амплитуда всех выходных напряждений трансформатора уменьшается, это приводит и к уменьшщению напряжения на выводе 2 микросхемы. Логика микросхемы увеличивает длительность управляющего импульса, в трансформаторе накапливается больше энергии и в результате амплитуда выходных напряжений возвращается к исходному значению. Если же нагрузка уменьшается, то напряжение на выводе 2 увеличивается, уменьшается длительность управляющих импульсов и снова амплитуда выходных напряжений возвращается к установленному значению.
В микросхему интегрирован вход для организации защиты от перегрузки. Как только на токоограничивающем резисторе R10 падение напряжения достигнет 1 В микросхема выключает управляющий импульс на затворе силового транзистора, тем самым ограничивая протекающий через него ток и исключая перегрузку блока питания. Зная величину этого управляющего напряжения можно регулировать ток сработки защиты изменяя величину токоограничивающего резистора. В данном случае максимальный ток через транзистор ограничивается 1,8 амперами.
Зависимость величины протекающего тока от номинала резистора можно расчитать по закону Ома, но каждый раз брать в руки калькулятор слишком лениво, поэтому расчитав один раз попросту занесем резутальтаты расчетов в таблицу. Напоминаю - нужно падение напряжения величиной один вольт, следовательно в таблице будут указаны лишь ток срабатывания защиты, номиналы резисторов и их мощность.

I, А 1 1,2 1,3 1,6 1,9 3 4,5 6 10 20 30 40 50
R, Ohm 1 0,82 0,75 0,62 0,51 0,33 0,22 0,16 0,1 0,05 0,033 0,025 0,02
2 х 0,33 2 х 0,1 3 х 0,1 4 х 0,1 5 х 0,1
P, W 0,5 1 1 1 1 2 2 5 5 10 15 20 25

Эта информация может понадобится, если пректируемый сварочный аппарат будет без трансформатора тока, а контроль будет осуществляться так же как и в базовой схеме - при помощи токоограничивающего резистора в цепи истока силового транзистора или в цепи эмиттера, при использовании транзистора IGBT.
Схема импульсного блока питания с непосредственным контролем выходного напряжения предлагается в даташнике на микросхему от Texas Instruments:

Данная схема контролирует выходное напряжение при помощи оптрона, яркость свечения светодиода оптрона определяет регулируемый стабилитрон TL431, что увеличивает коф. стабилизации.
В схему введены дополнительные элементы на транзисторах. Певрый имитирует систему софт-страрта, второй - увеличивает термостабильность за счет использования тока базы введенного транзистора.
Определить ток срабатывания защиты данной схемы труда не составит - Rcs равен 0,75 Ома, следовательно ток будет ограничиваться 1,3 А.
И предыдущая и эта схемы блоков питания рекомендуются в даташниках на UC3845 от "Texas Instruments", в даташниках остальных производителей рекомендутеся лишь первая схема.
Зависиммость частоты от номиналов частотозадающих резистора и конденсатора показаны на рисунке ниже:

Может невольно возникнуть вопрос - А ДЛЯ ЧЕГО НУЖНЫ ТАКИЕ ПОДРОБНОСТИ И ПОЧЕМУ РЕЧЬ ИДЕТ О БЛОКАХ ПИТАНИЯ МОЩНОСТЬЮ 20...50 ВАТТ??? СТРАНИЦА АНОНСИРОВАЛАСЬ КАК ОПИСАНИЕ СВАРОЧНОГО АППАРАТА, А ТУТ КАКИЕ ТО БЛОКИ ПИТАНИЯ...
В подавляющем большинстве простых сварочных аппаратов как раз и используется микросхема UC3845 в качестве управляющего элемента и без знания принципа ее работы возможно возникновение фатальных ошибок, способствующих выходу из строя не только копеешной микросхемы, но и довольно дорогих силовых транзисторов. К тому же я собираюсь проектировать сварочный аппарат, а не тупо клонировать чужую схему, искать ферриты, которые возможно даже придется покупать, для того, чтобы повторить чей то девайс. Не, меня такое не устраивает, поэтому берем имеющеюся схему и перетачиваем ее под то, что нужно нам, под те элементы и ферриты, которые есть в наличии.
Именно поэтому тут будет довольно много теории и несколько экспериментальных замеров и именно поэтому в таблице номиналов резисторов защиты использованы резисторы, включенные параллельно (голубые поля ячеек) и расчет сделан для токов более 10 ампер.
Итак, сварочный инвертор, который большинство сайтов называют сварочником Бармалея имеет следующую принципиальную схему:


УВЕЛИЧИТЬ

В верхней-левой части схемы блок питания для самого контроллера и по сути может использоваться ЛЮБОЙ блок питания с выходным напряжением 14...15 вольт и обеспечивающим ток в 1...2 А (2 А это для того, чтобы вентиляторы можно было поставить помощнее - в аппарате используются компьютерные вентиляторы и по схеме их аж 4 штуки.
Кстати сказать удалось найти даже сборник ответов по этому сварочному аппарату с какого то форума. Думаю это будет полезно тем, кто собрался чисто клонировать схему. ССЫЛКА НА ОПИСАНИЕ .
Регулировка тока дуги производится изменением опорного напряжения на входе усилителя ошибки, защита от перегрузки организована с использованием трансформатора тока ТТ1.
Сам контроллер работает на транзистор IRF540. В принципе там может использоваться любой транзистор с не очень большой энергией затвора Qg (IRF630, IRF640 и т.д.). Транзистор нагружен на управляющий трансформатор Т2, который непосредственно подает управлдяющие импульсы на затворы силовых IGBT транзисторов.
Чтобы управляющий трансформатор не намагничивался используется на нем выполнена размагничивающая обмотка IV. Вторичные обмотки управляющего трансформатора нагружены на затворы силовых транзисторов IRG4PC50U через выпрямитель на диодах 1N5819. Причем в схеме управления имеются форсирующие закрытие силовой части транзисторы IRFD123, которые при смене полярности напряжения на обмотках трансформатора Т2 открываются и всю энергию затворов силовых транзисторов гасят на себя. Подобные ускорители закрытия облегчают токовый режим драйвера и значительно сокращают время закрытия силовых транзисторов, что в свою очередь уменьшает их нагрев - время нахождения в линейном режиме значительно сокращается.
Так же для облегчения работы силовых транзисторови подавления импульсных помех, возникающих при работе на индуктивную нагрузку служат цепочки из резисторов на 40 Ом, конденсаторов на 4700 пкФ и диодов HFA15TB60.
Для окончательного размагничивания сердечника и подавления выбросов самоиндукции используется еще одна пара HFA15TB60, установленные правее по схеме.
На вторичной обмотке трансформатора установлен однополупериодный выпрямитель на диоде 150EBU02. Диод шунтирован помехоподовляющей цепочкой на резисторе 10 Ом и конденсаторе на 4700 пкФ. Второй диод служит для размагничивания дросселя ДР1, кторый во время прямого хода преобразователя накапливает магнитную энергию, а во время паузы между импульсами отдает эту энергию в нагрузку за счет самоиндукции. Для улучшения этого процесса как раз и устанавливается дополнительный диод.
В результате на выходе инвертора получается не пульсирующее напряжение, а постоянное с не большой пульсацией.
Следующей подмодификацией данной сварочного аппарта является схема инвертора приведенного ниже:

Сильно не вникал, что там намудрено по выходному напряжению, лично мне больше понравилось использование в качестве закрывающих силовую часть биполярных транзисторов. Другими словами в данном узле можно использоввать и полевики и биполярники. В принципе это как бы подразумевалось по умолчанию, главное - как можно быстрее закрыть силовые транзисторы, а каким образом это сделать уже второстепенный вопрос. В принципе используя более мощный трансформатор управления от закрывающих транзисторов можно и отказаться - достаточно на затворы силовых транзисторов подать не большое отрицательное напряжение.
Однако меня всегда смущало наличие управляющего трансформатора в сварочном аппарате - ну не люблю я моточные детали и по возможности стараюсь обходится без них. Перебор схем сварочников продолжился и была откопана следующая схема сварочного инвертора:


УВЕЛИЧИТЬ

Данная схема отличается от предшествующих отсутствием управляющего трансформатора, поскольку открытие-закрытие силовых транзисторов происходит специализированными микросхемами драйверов IR4426, которые в свою очередь управляются оптронами 6N136.
В этой схеме реализовано еще пара вкусностей:
- введен ограничитель выходного напряжения, выполненный на оптроне PC817;
- реализован принцип стабилизации выходного тока - трансформатор тока используется не как аварийный, а именно как датчик тока и принимает участие в регулировке выходного тока.
Такой вариант сварочного аппарата гарантирует более устойчивую дугу даже на не больших токах, поскольку при увеличении дуги ток начинает уменьшаться, а этот аппарат будет увеличивать выходное напряжение, стараясь удержать установленное значение выходного тока. Единственный недостаток - нужен галетный переключатель на как можно большее количество положений.
Так же попалась на глаза еще одна схема сварочного аппарата для самостоятельного изготовления. Заявлен выходной ток в 250 ампер, но это не главное. Главное - использование в качестве драйвера довольно популярной микросхемы IR2110:


УВЕЛИЧИТЬ

В этом варианте сварочника тоже используется ограничение выходного напряжения, но вот стабилизации тока нет. Есть еще одно смущение, причем довольно серьезное. каким образом заряжается конденсатор С30? В принципе во время паузы должно происходить доразмагничивание сердечника, т.е. полярность напряжения на обмотки силового трансформатора должна поменяться и чтобы не слетели транзисторы как раз и установлены диоды D7 и D8. Вроде бы этого кратковременно на верхнем выводе силового трансформатора должно появится напряжение на 0,4...0,6 вольта меньше чем общий провод, это довольнократкосрочное явление и есть некоторые сомнения в том, что С30 успеет зарядится. Ведь если он не зарядится верхнее плечо силовой части не откроется - не откуда будет взяться напряжению вольтодобавки драйвера IR2110.
В общем над этой темой имеет смысл поразмышлять более досконально...
Есть еще один вариант сварочного аппарата, выполненного по той же топологии, но в нем использовались отечесвенные детали и в больших количествах. Принципиальная схема приведена ниже:


УВЕЛИЧИТЬ

Прежде всго бросается в глаза силовая часть - по 4 штуки IRFP460. Причем автор в оригинальной статье утверждает, что первый вариант был собран на IRF740 по 6 штук в плечо. Это действительно "голь на выдумку хитра". Тут же сразу следует сделать запоминаку - в сварочном инверторе могут использоваться как IGBT транзисторы, так и транзисторы MOSFET. Для того, чтобы не путаться с определениями и цоколевкой вышаем рисуночек этих самых транзисторов:

Кроме этого имеет смысл отметить, что в данной схеме используется и ограничение выходного напряжения и режим стабилизации тока, который регулируется переменным резистором на 47 Ом - низкоомность данного резистора единственный недостаток данной реализации, но при желании такой найти можнопричем увеличение данного резистора до 100 Ом не критично, просто нужно будет увеличить и ограничивающие резисторы.
Еще один вариант сварочного аппарата попался на глаза штудируя иностранные сайты. В этом аппарате так же имеется регулировка тока, но выполнена она не совсем обычно. На вывод контроля тока изначально подается напряжение смещения и чем оно больше, тем требуется меньшее напряжение с трансформатора тока, следовательно, тем меньший ток будет протекать через силовую часть. Если же напряжение смещения минимально, то для достижения тока срабатывания ограничителя потребуется большее напряжение с ТТ, которое возможно лишь при протекании большого тока через первичную обмотку трансформатора.
Принципиальная схема данного инвертора приведена ниже:


УВЕЛИЧИТЬ

В этой схеме сварочного аппарата на выходе установлены электролитические конденсаторы. Мысль конечно же интересная, но для данного устройства потребуются электролиты с маленьким ESR, а на 100 вольт такие конденсаторы найти довольно проблематично. Поэтому я откажусь от установки электролитов, а поставлю пару-тройку конденсаторов MKP X2 на 5 мкФ, используемые в индукционных плитах.

СОБИРАЕМ СВОЙ СВАРОЧНЫЙ АППАРАТ

ПОКУПАЕМ ДЕТАЛИ

Прежде всего сразу скажу - сборка сварочного аппарата самостоятельно это не попытка сделать аппарат дешевле магазинного, поскольку в конечном итоге может получится так, что собранный аппарат получится дороже, чем заводской. Однако есть в этой затее и свои плюсы - данный аппарат можно приобрести в безпроцентный кредит, поскольку совсем не обязательно покупать сразу весь комплект деталей, а делать покупки по мере появления свободных денег в бюджете.
Опять же изучение силовой электроники и сборка подобного инвертора самостоятельно дает безценный опыт, который позволит собирать подобные устройства, затачивая непосредственно под свои нужды. Например собрать пуско-зарядное устройство с выходным током 60-120 А, собрать источник питания для плазмореза - устройства хоть и специфического, но для работающих с металлом штука ОЧЕНЬ полезная.
Если же кому то покажется, что я ударился в рекламу Али, то скажу сразу - да, я рекламирую Али, потому что меня устраивает и цена и качество. С тем же успехом я могу рекламировать нарезанные батоны Аютинского хлебозавода, но черный хлеб я покупаю Красно-Сулинский. Сгущенное молоко предпочитаю и Вам рекомендую, "Коровка из Кореновки", а вот творог гораздо лучше Тацинского молочного завода. Так что я готов рекламировать все, что попробовал сам и мне понравилось.

Для сборки сварочного аппарата потребуется дополнительное оборудование, которое необходимо для сборки и наладки сварочного аппарата. Данное оборудование тоже стоит каких то денег и если Вы действительно собираетесь заниматься силовой электроникой, то оно Вам пригодится и позже, если же сборка данного устройства является попыткой потратить меньше денег, то смело отказывайтесь от этой идеи и идите в магазин за готовым сварочным инвертором.
Подавляющее большинство комплектующих я покупаю на Али. Ждать приходится от трех недель до двух с половиной месяцев. Однако стоимость комплектующих значительно дешевле, чем в магазине радиодеталей к кторому мне еще нужно ехать 90 км.
Поэтому сразу сделаю не большую инструкцию как лучше покупать компоненты на Али. Ссылки на используемые детали я буду давать по мере их упоминания, причем давать буду на результаты поиска, потому что есть вероятность того, что через пару-тройку месяцев у какого то продавца этого товара не будет. Так же для сравнения буду давать цены на упоминаемые компоненты. Цены будут в рублях на момент написания данной статьи, т.е. середина марта 2017 года.
Перейдя по ссылке на результаты поиска прежде всего следует отметить, что сортировка произведена по количеству покупок того или иного товара. Другими словами Вы уже имеете возможность посмотреть сколько именно этого товара какой то продавец продал и какие отзывы на эти товары получил. Погоня за низкой ценой далеко не всегда свляется правильной - Китайские предприниматели стараются реализовать ВСЮ продукцию, поэтому иногда случаются и перемаркированные элементы, а так же элементы после демонтажа. Поэтому смотрите на количество отзывов о товаре.

Если же есть эти же компоненты по более привлекательной цене, но количество продаж у этого продавца не большое, то имеет смысл обратить внимание общее количетсво положительных отзывов о продавце.

Имеет смысл обратить внимание на фотографии - наличие самой фотографии торвара говорит об ответственности продавца. А на фото как раз видно какая маркировка, это частенько помогает - маркировку лазером и краской видно и на фото. Силовые транзисторы я покупаю с алзерной маркировкой, а вот IR2153 брал и с маркировкой краской - микросхемы рабочие.
Если выбираются силовые транзисторы, то довольно часто я не брезгую транзисторами с демонтажа - у них обычно разница по цене довольно приличная, а для прибора, собираемого самостоятельно можно использовать и детали с более короткими ногами. Отличить детали не сложно даже по фото:

Так же несколько раз я наскакивал на разовые акции - продавцы без рейтинга вообще выставляют на продажу какие то компоненты по ОЧЕНЬ смешным ценам. Разумеется, что покупка осуществляется на свой страх и риск. Однако я делал пару покупок у подобных продавцов и обе удачные. Последний раз я приобрел конденсаторы MKP X2 на 5 мкФ за 140 рублей 10 штук.


Заказ пришел довольно быстро - чуть больше месяца, 9 штук на 5 мкФ, а один, точно такого же размера на 0,33 мкФ 1200 В. Спор открывать я не стал - у меня для индукционных игрушек все емкости на 0,27 мкФ и как бы на 0,33 мкФ мне даже пригодится. Да и цена уж больно смешная. Емкости все проверил - рабочие, хотел заказать еще, но уже была вывеска - ТОВАР БОЛЕЕ НЕ ДОСТУПЕН.
До этого брал несколько раз демонтажные IRFPS37N50, IRGP20B120UD, STW45NM50. Все транзисторы исправны, единственно что несколько огорчило, так это на STW45NM50 ноги были переформованы - на трех транзисторах (из 20-ти) выводы буквально отпали при попытке их согнуть под свою плату. Но цена была уж слишком смешной, чтобы на что то обижаться - 20 штук за 780 рублей. Транзисторы эти теперь используются как подстановочные - корпус спилен до вывода, припяны провода и залито эпоксидным клеем. Один до сих пор жив, прошло уже два года.

Пока с силовыми транзисторами вопрос открытый, а вот разъемы для электрододержателя нужны будут по любому сварочному аппарату. Поиски были продолжительными и довольно активными. Дело в том, что сильно смущает разница в цене. Но для начала о маркировке разъемов для сварочного аппарата. На Али используется Европейская маркировка (ну так у них написано), поэтому будем танцевать от их обозначений. Правда шикароного танца не получится - данные разъемы раскиданы по различным категориям, начиная от USB разъемов, ПАЯЛЬНЫХ ЛАМП и заканчивая ПРОЧЕЕ.

Да и по названию разъемов тоже не все так гладко, как хотелось бы... Я был ОЧЕНЬ сильно удивлен, когда в поисковую строку на Гуглохроме и ОС WIN XP вбил DKJ35-50 и получил НЕТ РЕЗУЛЬТАТОВ , а тот же запрос на том же Гуглохроме, но WIN 7 дал хоть какие то результаты. Ну для начала небольшая табличка:

DKZ DKL DKJ
МАКС
ТОК, А
ДИАМЕТР
ОТВ-ТИЯ/
ШТЕКЕРА,
ММ
СЕЧЕНИЕ
ПРОВОДА,
ММ2
DKZ10-25 DKL10-25 DKJ10-25 200 9 10-25
DKZ35-50 DKL35-50 DKJ35-50 315 13 35-50
DKZ50-70 DKL50-70 DKJ50-70 400 13 50-70
DKZ70-95 DKL70-95 DKJ70-95 500 13 70-95

Не смотря на то, что отверстия и штекеры у разъемов на 300-500 ампер одинаковые они реально способны проводить разный ток. Дело в том, что во время проворачивания разъема штекерная часть упирается торцом в торец ответной части и поскольку диаметры торцов у более мощных разъемов больше получается большая площадь контакта, следовательно разъем способен пропускать больший ток.

ПОИСК РАЗЪЕМОВ ДЛЯ СВАРОЧНЫХ АППАРАТОВ
ПОИСК DKJ10-25 ПОИСК DKJ35-50 ПОИСК DKJ50-70
ПРОДАЮТСЯ КАК В РОЗНИЦУ, ТАК И КОМПЛЕКТАМИ

Разъемы DKJ10-25 я покупал год назад и у этого продавца их больше нет. Буквально пару дней назад я заказал пару DKJ35-50. Покупал . Правда пришлось сначала объясняться с продавцом - в описании написано, что под провод 35-50 мм2 , а на фоторгафии 10-25 мм2 . Продавец заверил, что это разъемы под провод 35-50 мм2 . Что пришлет увидим - есть время подождать.
Как только первый вариант сварочного аппарата пройдет испытания начну собирать второй вариант с гораздо большим набором функций. Не буду скромничать - уже больше полугода пользуюсь сварочным аппаратом AuroraPRO INTER TIG 200 AC/DC PULSE (есть точно такой же и именем "КЕДР"). Аппарат мне очень нравится, а его возможности просто вызвали бурю восторга.

Но в процессе освоения сварочного аппарата выяснилось несколько недостатков, которые хотелось бы устранить. Я не буду вдаваться в подробности что именно мне не понравилось, поскольку аппарат действительно весьма не дурен, но хочется больше. Поэтому собственно и взялся за разработку своего сварочного аппарата. Аппарат типа "Бармалей" будет тренировочным, а следующий уже должен будет превзойти имеющуюся "Аврору".

ОПРЕДЕЛЯЕМСЯ С ПРИНЦИПИАЛЬНОЙ СХЕМОЙ СВАРОЧНОГО АППАРАТА

Итак, просмотрены все варианты схем, заслуживающие внимания, приступаем к сборке собственного сварочного аппарата. Для начала нужно определится с силовым трансформатором. Покупать ш-образные ферриты я не стану - имеются в наличии ферриты от строчных трансформаторов и есть довольно много одинаковых. Но форма данного сердечника довольно своеобразна, да и магнитная проницаемость на них не указана...
Придется сделать несколько тестовых замеров, а именно сделать каркасик под один сердечник, намотать на нем с полсотни витков и одевая этот каркасик на сердечники выбрать те, у которых индуктичность будет максимально одинаковая. Таким образом будут отобраны сердечники, которые будут использованы для сборки общего сердечника, состоящего из нескольких магнитопроводов.
Далее нужно будет выяснить, сколько витков необходимо намотать на первичной обмотке, чтобы сердечник и в насыщение не вогнать и использовать максимально габаритную мощность.
Для этого можно воспользоваться статьей Бирюкова С. А. (СКАЧАТЬ), а можно по мотивам статьи собрать свой собственный стенд для проверки насыщаемости сердечника. Второй способ для меня предпочтительней - для данного стенда я использую ту же микросхему, что и для сварочного аппарата - UC3845. Прежде всего это позволит "пощупать" микросхему живьем, проверить диапазоны регулировок, а установив в стенд панельку для микросхем я смогу проверять данные микросхемы непосредственно перед установкой в сварочный аппарат.
Собирать будем следующую схему:

Здесь почти классическая схема включения UC3845. На VT1 собран стабилизатор напряжения для самой микросхемы, поскольку диапазон питающих напряжения самого стенда довольно большой. VT1 любой в корпусе ТО-220 с током от 1 А и напряжением К-Э выше 50 В.
Кстати о питающих напряжениях - нужен БП с напряжением минимум 20 вольт. Максимальное напряжение не более 42 вольт - для работы голыми руками это еще безопасное напряжение, хотя лучше выше 36 не подниматься. Блок питания должен обеспечивать ток не менее 1 ампера, т.е. иметь мощность от 25 Вт и выше.
Здесь стоит учитывать, что данный стенд работает по принципу бустера, поэтому суммарно напряжение стабилитронов VD3 и VD4 должно быть как минимум на 3-5 вольт больше напряжения питания. Превышать разницу более чем на 20 вольт крайне не рекомендуется.
В качестве блока питания для стенда можно использовать автомобильное зарядное устройство с классическим трансофрматором, не забыв поставить на выход зарядного пару конденсаторов на 1000мкФ 50В. Регулятор тока зарядки ставим на максимум - больше чем нужно схема не возьмет.
Если нет подходящего блока питания и собрать его не из чего, то можно ПРИОБРЕСТИ ГОТОВЫЙ БЛОК ПИТАНИЯ , выбрать можно и в пластиковом корпусе, и в металлическом. Цена от 290 рублей.
Транзистор VT2 служит для регулировки подаваемого на индуктивность напряжения, VT3 - формирует импульсы на исследуемой индуктивности, а VT4 - выступает в роли размагничивающего индуктивность устройства, так сказать электронная нагрузка.
Резистором R8 - частота преобразования, а R12 подаваемое на дроссель напряжение. Да, да, именно дроссель, поскольку пока у нас нет вторичной обмотки этот кусок трансформатора есть не что иное как самый обычный дроссель.
Резисторы R14 и R15 измерительные - с R15 производится контроль тока микросхемой, а с обоих прозводится контроль формы напряжения падения. Используется два резистора для увеличения напряжения падения и меньшего сбора мусора осциллографом - клемма X2.
Тестируемы дроссель подключается к клеммам X3, а к клеммам X4 подключается напряжение питания стенда.
На схеме показано то, что собрано у меня. Однако эта схема имеет довольно не приятный недостаток - напряжение после транзистора VT2 сильно зависит от нагрузки, поэтому я в своих замерах использовал положение движка R12, при котром транзистор полностью открыт. Если доводить данную схему до ума, то желательно вместо полевика использовать параметрический регулятор напряжения, ну например вот такой:

Я что то еще делать с этим стендом не буду - у меня есть ЛАТР и я могу спокойно изменять напряжение питания стенда подключив тестовый, обычный трансформатор через ЛАТР. Единственно, что пришлось добавить - вентилятор. VT4 работает в линейном режиме и греется довольно бодро. Чтобы не перегревать общий радиатор воткнул вентилятор и ограничительными резисторами.

Здесь логика довольно простая - я вбиваю параметры сердечника, делаю расчет для преобразователя на IR2153, а выходное напряжение ставлю равным выходному напряжению своего блока питания. В итоге у меня получается для двух колец К45х28х8 для вторичного напряжения необходимо намотать 12 витков. Мотаемс...

Начинаем с минимальной частоты - за перегрузку транзистора можно не беспокоится - сработает ограничитель тока. Осциллографом становимся на клеммы Х1, плавно увеличиваем частоту и наблюдаем следующую картинку:

Далее составляем пропорцию в Экселе для вычисления количества витков в первичной обмотке. Результат будет существенно отличаться от расчетов в программе, но даем себе отчет, что программа учитывает и время пауз и напряжения падения на силовых транзисторах и выпрямительных диодах. К тому же увеличесние количества витков не приводит к пропорциональному увеличению индуктивность - там квадратичная засимость. Поэтому увеличение количества витков приводит к существенному увеличению индуктивного сопротивления. ПРограмам это тоже учитывает. Мы же сделаем не много по другому - чтобы дать поправку на эти параметры в свою таблицу мы вносим уменьшение на 10% первичного напряжения.
Рядом строим вторую пропорцию по которой можно будет вычислить нужное количество витков под вторичные напряжения.
Перед пропорциями с количеством витков есть еще две таблички с помощью которых можно вычислить количество витков и индуктивность выходного дросселя сварочного аппарата, что для данного устройства тоже довольно важно.

В этом файле пропорции лежат на ЛИСТЕ 2 , на ЛИСТЕ 1 расчеты импульсных блоков питания для видео о расчетах в Экселе. Решил все таки дать свободный доступ. Видео, котором идет речь здесь:

Текстовый вариант о том как составить данную таблицу и исходные формулы .

С расчетами закончили, но осталась червоточина - схема стенда простая как три копейки, показала вполне приемлемые результаты. Может собрать полноценный стенд с питанием непосредственно от сети 220? Но гальваническая связь с сетью это не очень хорошо. Да и удалять накопленную индуктивностью энергию при помощи линейного транзистора тоже не очень хорошо - нужен будет ОЧЕНЬ мощный транзистор с ОГРОМНЫМ радиатором.
Ладно, нужно не много подумать...

Как выяснить насыщаемость сердечника вроде разобрались, выбираем сам сердечник.
Уже упоминалось, что искать и покупать Ш-образный феррит лично мне слишком лениво, поэтому Достаю свой ящик с ферритами от строчных трансформаторов и выбираю ферриты одного размера. Затем делаю оправку именно для одного сердечника и мотаю на ней витков 30-40 - чем больше витков - тем точнее получатся результаты измерений индуктивности. Мне нужно выбрать одинаковые сердечники.
Сложив получившиеся в Ш-образную конструкцию делаю оправку и мотаю пробную обмотку. Пересчитав количество витков первички выясняется, что габаритной мощности маловато будет - Бармалеи содержат 18-20 витков первички. Беру сердечники большего размера - остались от каких то старых заготовок и начинается пара часов тупизма - проверяя середчнки по методике, изложенной в первой части статьи количество витков получается даже больше, чем у счетверенного сердечника, а я использовал шесть коплектов и размер гораздо больше...
Лезу в программы расчета "Старичка" - он же Денисенко. На всякий случай вбиваю сдвоенный сердечник Ш20х28. Расчет показывает, что для частоты 30 кГц количество витков первички равно 13-ти. Допускаю мысль, что "лишнии" витки намотаны для исключения насыщения на 100%, ну и зазор тоже нужно компенсировать.

Перед вводом своих новых сердечников пересчитваю площадь круглых краев сердечника и вывожу значения для якобы прямоугольных краев. Расчет делаю для мостовой схемы, поскольку в однотактном преобразователе прикладывается ВСЕ имеющиеся первиное напряжение. Вроде все сходится - с данных сердечников можно взять порядка 6000 Вт.

По ходу выясняется, что в программах какой то косячок - полностью одинаковые данные для сердечников в двух программах дают разные результаты - ExcellentIT 3500 и ExcellentIT_9 вещают разную мощность получающегося трансформатора. Разница в несколько сотен ватт. Правда количество витков первичной обмотки совпадают. Но если количество витков первички одинаковое, то и габаритная мощность дожна быть одинаковая. Еще часик уже повышенного тупизма.
Чтобы не пинать посетителей на поиски программ Старичка собрал их в один сборник и упаковал в один архив, который можно СКАЧАТЬ . Внутри архива практически все программы созданные Старичком, которые удалось найти. На каком то форуме тоже видел подобный сборник, но вот на каком чет не припомню.
Для решения возникшей проблемы еще раз перечитываю статью Бирюкова...
Становлюсь осциллографом на резистор в цепи истока и начинаю наблюдать измения формы падения напряжения на разных индуктивностях.
На не больших индуктивностях действительно происходит перегиб формы напряжения падения на истоковом резисторе, а вот уже на счетверенном сердечнике от ТДКС она линейна хоть на частоте 17 кГц, хоть на 100 кГц.
В принципе можно использовать данные из программ-калькуляторов, но на стенд возлагались надежды и они реально рушаться.
Не спешно откидываю витки на сшестеренном сердечнике и прогняю его на стенде наблюдая за изменниями осциллограм. Реально какая то фигня! Ток ограничивается стендом еще до того как ничается изгибаться кривая напряжения...
Малой кровью обойтись не получается - даже увеличив ограничение тока до 1А падение напряжение на истоковм резисторе все равно линейное, но появляется закономерность - дойдя до определенной частоты ораничение тока выключается и длительность импульса начинает меняться. Все таки для этого стенда индуктивность слишком большая...
Остается проверить мои подозрения и намотать пробную обмотку на 220 вольт и...
Достаю с полки своего монстра - давненько я им не пользовался.

Описание данного стенда с чертежом печатной платы .
Прекрасно понимаю, что собирать подобный стенд ради сборки сварочного аппарата занятие довольно трудоемкое, поэтому приведенные результы измерений это лишь промежуточный результат, чтобы иметь хоть какое представление о том, какие сердечники и как можно использовать. Далее, в процессе сборки, когда уже будет готова печатная плата на рабочий сварочник я еще раз перепроверю сделанные в этих замерах результаты и попытаюсь разаработать методику безошибочной намотки силового трансформатора с использованием готовой платы как проверочного стенда. Ведь маленький стенд вполне работоспособен, но только для маленьких индуктивностей. Можно конечно попробовать поиграться с количеством витков, уменьшая их до 2-х или 3-х, но даже на перемагничивание такого массивного сердечника требуется не мало энергии и блоком питания в 1 А уже не отделаешься. Методика с использованием стенда перепроверилась при использовании традиционного сердечника Ш16х20, сложенный вдвое. На всякий случай размеры Ш-образных отечественных сердечников и рекомендуемые замены на импортные сложил .
Так что с сердечниками ситуация хоть и прояснилась, но на всякий случай результаты будут перепроверены уже на однотактном инверторе.

Пока же начнем изготовление жгута для трансформатора сварочного аппарата. Можно свить жгут, можно склеить ленту. Мне всегда больше нравились ленты - по трудоемкости они конечно превосходят жгуты, но плотность намотки гораздо выше. Следовательно можно снизить напряженность в самом проводе, т.е. в расчет закладывать не 5 А/мм2 , как обычно делается для подобных игрушек, а к примеру 4 А/мм2 . Это заметно облегчит тепловой режим и скорей всего даст возможность получить ПВ равным 100%.
ПВ - один из наиболее важных параметров сварочных аппаратов, ПВ это П родолжительность В ключения, т.е. время не прерывной сварки на токах близких к максимальным. Если ПВ равно 100% на максимальном токе, то это уже автоматически переводит сварочный аппарат в разъряд профессиональных. Кстати даже у многих профессиональных ПВ равно 100% только при выходном токе равным 2/3 от максимального. Экономят на системах охлаждения, но я то вроде собрался делать сварочный аппарат для себя, следовательно я могу себе позволить и гораздо большие площади теплоотводов для полупроводников, а для трансформатора сделать более легкий тепловой режим...

Аппарат дуговой сварки должен обеспечивать падающую вольтамперную характеристику в нагрузке (дуге). В мостовых инверторах, как правило, падающая характеристика обеспе­чивается достаточно сложной электроникой с обязательной обратной связью по току. С точки зрения простоты управле­ния, на мой взгляд, наиболее привлекателен именно резо­нансный мост. В нем падающая характеристика источника сварочного тока обеспечивается параметрическими свойст­вами резонансной цепочки в первичной цепи инвертора.

Особенностью инвертора, который представлен в этой статье, является не только использование полного резонанс­ного моста, но и управление им с помощью микроконтрол­лера PIC16F628-20I/P.

Сразу заметим, что максимальный сварочный ток ин­вертора зависит от настройки. Его значение целиком опре­деляется шириной немагнитного зазора в магнитопроводе ре­зонансного дросселя. Для используемых в инверторе сило­вых элементов, при условии соблюдения их тепловых режи­мов, сварочный ток может достигать 200 А.

Принципиальная схема инвертора разделена на две час­ти. На рис.1 показана силовая часть, а на рис.2 — схема бло­ка питания с блоком управления. Классический мостовой сва­рочный инвертор состоит из выпрямителя сетевого напряже­ния с фильтрующими конденсаторами. Постоянное напряже­ние 300 В с помощью 4 ключей преобразуется в переменное более высокой частоты, которое с помощью сварочного транс­форматора понижается, а затем выпрямляется.

Силовая часть

В резонансных преобразователях последовательно с пер­вичной обмоткой сварочного трансформатора Т1 включены ре­зонансный дроссель L1 и резонансный конденсатор С1-С10 (см. рис.1 на котором силовые цепи выделены жирными ли­ниями). Индуктивность последовательного контура состоит из индуктивности резонансного дросселя L1 и индуктивности пер­вичной обмотки трансформатора Т1. Вторичная обмотка Т1 на­гружена сварочной дугой. Если емкость С1-С10 и индуктив­ность L1 величины постоянные, то индуктивность первичной обмотки Т1 зависит от сопротивления нагрузки во вторичной обмотке, т.е. от сварочного тока. Максимальной индуктивнос­ти первичной обмотки Т1 соответствует режим «холостого хо­да» инвертора, а минимальной — режим короткого замыкания. Сопротивление нагрузки определяет также добротность конту­ра. Таким образом, резонансная частота контура минимальна в режиме «холостого хода» (при максимальной индуктивности первичной обмотки Т1) и максимальна в режиме короткого замыкания (при минимальной индуктивности первичной обмот­ки Т1). Когда нагрузкой инвертора служит сварочная дуга, ре­зонансная частота контура зависит от тока в дуге.

Из всего сказанного выше, очевидно, что частота инвер­тора при работе на максимальную мощность в дуге должна быть ниже собственной частоты резонансного контура инвер­тора в режиме короткого замыкания и выше ее в режиме «холостого хода». Оптимально, чтобы резонанс наступал на собственной частоте контура, при которой в дуге развивает­ся максимальная мощность (f МАКС. МОЩН.). Именно это яв­ляется основным критерием правильной настройки инверто­ра. Если в этом случае увеличивать частоту инвертора от­носительно f МАКС. МОЩН. , ток в дуге уменьшается за счет увеличения индуктивного сопротивления резонансного дрос­селя L1. Так осуществляется частотное регулирование тока в сварочной дуге.

Резонанс в контуре инвертора при коротком замыкании и неправильной настройке инвертора возможен и на часто­те выше, чем f МАКС. МОЩН. .

Заметим также, что резонанс недопустим в режиме ко­роткого замыкания для транзисторных ключей инвертора по причине возникновения сверхтока в первичной цепи. По­скольку режим короткого замыкания является штатным ре­жимом для сварочного аппарата, необходимо не допускать работу инвертора на частотах выше f МАКС. МОЩН. при корот­ком замыкании в сварочной цепи.

Для этого в данном инверторе микроконтроллером непре­рывно отслеживается факт короткого замыкания сварочных проводов с помощью специального детектора. При возникно­вении короткого замыкания микроконтроллер автоматически уменьшает частоту инвертора до ранее заданного значения f МАКС. МОЩН. — на этой частоте резонанс в коротком замыка­нии невозможен, что предотвращает протекание чрезмерного тока в первичной цепи и, соответственно, через ключи.

В силовой части (рис.1) R13 — пусковой резистор. Он ограничивает зарядный ток оксидных конденсаторов С16, С17 при включении аппарата. Диодный мост VD14-VD21 предназ­начен для выпрямления сетевого напряжения 220 В / 50 Гц, которое сглаживается конденсаторами С15-С17 и подается на выходной мост схемы, состоящий из 4 ключей на IGBT- транзисторах VT1-VT4.

Супрессоры VD3, VD9 и VD22 защищают ключи от вы­бросов напряжения. Резисторы R5, R6 разряжают резо­нансный конденсатор при выключении инвертора. Стабилитроны VD1, VD2, VD4, VD5 не допускают превышения на­пряжения на затворах клю­чей выше 18 В. Резисторы R1, R3, R7 и R9 ограничи­вают выходной ток драйве­ров в моменты заряда-раз­ряда затворных емкостей ключей. Резисторы R2, R4, R8, R10 обеспечивают на­дежное закрытие ключей в моменты, когда отсутствует питание драйверов.

Сварочный трансформа­тор Т1 с коэффициентом трансформации 6 понижает напряжение и обеспечивает гальваническую развязку вы­хода относительно сетевой части инвертора. Переменное напряжение с вторичной обмот­ки сварочного трансформатора выпрямляет­ся диодами VD6, VD7 и поступает через сва­рочные провода на электрод и сваривае­мые поверхности. Цепочки R11C13 и R12C14 служат для поглощения энергии выбросов об­ратного напряжения выходного выпрямите­ля. Для устойчивого горения дуги при малых токах, а также для облегчения ее зажига­ния предусмотрен удвоитель напряжения, со­бранный на элементах С11, С12, VD10-VD13, С19, С20 и L2. Резистор R14 служит нагруз­кой удвоителя. Супрессор VD8 защищает ди­оды выходного выпрямителя от выбросов об­ратного напряжения.

Блок питания

Построен по схеме обратноходового преобразователя на основе специализированной микросхемы DA6 TNY264 по типовой схеме (рис.2) . Он обеспечивает питание драйве­ров, реле и микроконтроллерного блока управления. Элект­ропитание драйверов верхних ключей гальванически изоли­ровано от канала питания реле 24 В и канала питания ниж­них драйверов. Для питания микроконтроллера DD1 (5 В) при­менен параметрический стабилизатор DA7. Драйвера DA1-DA4 типа HCPL3120 предназначены для управления ключами VT1-VT4 и обеспечивают крутые фронты управляющих им­пульсов на затворах этих транзисторов.

Детектор короткого замыкания собран на элементах R25, R27, R28, DA8, VD32, VD33, С38. При напряжении на сва­рочных проводах ниже 9 В (короткое замыкание) на входе RB4 контроллера DD1 появляется высокий логический уро­вень, а при напряжении более 9 В (короткого замыкания нет) на входе RB4 — низкий логический уровень.

В позиции DD1 использован широко распространенный микроконтроллер (МК) PIC16F628-20I/P в DIP-корпусе.

Работа инвертора

Как только запустится блок питания, начинает работать программа микроконтроллера. Спустя задержку примерно 5 с включится зуммер и начнет работать инвертор. Как только напряжение в сварочных проводах превысит 9 В, МК откро­ет ключ VT5, который включит реле К1, а контакты реле зашунтирует зарядный резистор R13. Зуммер также отключит­ся. С этого момента инвертор готов к работе. Частота рабо­ты инвертора будет определяться положением потенциомет­ра R18. Причем минимальной частоте (она же f МАКС. МОЩН.) соответствует максимальный сварочный ток, а максимальной частоте — минимальный ток. Частота изменяется ступенчато (дискретно). Используется всего 17 позиций. При вращении потенциометра R18 изменение частоты сопровождается ко­ротким звуковым сигналом зуммера. Таким образом, мож­но по звуку зуммера изменить частоту сварочного тока на нужное число позиций.

При коротком замыкании в сварочных проводах инвер­тор автоматически начинает работать на частоте f МАКС. МОЩН. ,- Работа инвертора в режиме короткого замыкания сопро­вождается звуковым сигналом зуммера. Если короткое за­мыкание длится более 1 с, то работа инвертора блокирует­ся и спустя 3 с вновь возобновляется. Так реализована функ­ция антизалипания электрода.

При отсутствии короткого замыкания на вход RB4 подается низкий логический уровень, и частота инверто­ра определяется положением потенциометра R18.

Для защиты выходных ключей от перегрева исполь­зуются в качестве датчиков два термостата TS1 и TS2. Если произошло отключение хотя бы одного из термо­статов, то работа инвертора блокируется. Зуммер изда­ет прерывистый частый звуковой сигнал до остывания ра­диатора, на котором установлен сработавший термостат.

Конструкция и детали Резонансный дроссель L1 намотан на магнитопроводе ETD59, материал №87 фирмы EPCOS и содержит 12 вит­ков медного провода диаметром 2 мм в лаковой изоляции. Провод наматыва­ется с обязательным зазором между витками. Для обеспечения зазора мож­но использовать толстую нить. Для фик­сации обмотки нужно промазать витки эпоксидным клеем. Половинки магнитопровода стыкуются с немагнитным за­зором 1…2 мм. Более точное значение немагнитного зазора подбирается при настройке резонансной частоты. Во вре­мя работы инвертора магнитопровод ре­зонансного дросселя может сильно на­греваться. Это связано с насыщением феррита при работе в резонансе. Для обеспечения надежной фик­сации зазора магнитопровода его половинки должны стягиваться металлическими шпильками. При этом необ­ходимо обеспечить расстоя­ние от зазора до шпилек не менее 5 мм. Иначе рядом с зазором шпильки могут расплавиться. По этой же причине недопустимо стяги­вать дроссель сплошным ме­таллическим кожухом.

Трансформатор Т1 намо­тан на магнитопроводе Е65, материал №87 фирмы EPCOS. Сначала в один ряд мотают первичную обмотку — 18 витков медного провода диамет­ром 2 мм в лаковой изоляции. Поверх первичной обмотки мотают обмотки II и III. Каждая из них занимает половину каркаса. Обмотки II и III содержат по 3 витка в четыре мед­ных провода диаметром 2 мм. Половинки магнитопровода трансформатора стыкуют без зазора и надежно фиксируют.

Дроссель L2 содержит 20 витков монтажного провода сечением 1,5 мм 2 , намотанных на ферритовом кольце К28х16х9.

Трансформатор Т2 наматывают на феррите Ш5х5 с про­ницаемостью 2000 НМ. Половинки магнитопровода стыкуют с зазором 0,1…0,2 мм. Обмотка I содержит 180 витков про­вода ПЭВ-1 диаметром 0,2 мм. Обмотку II мотают в один ряд, содержит 47 витков такого же провода. Обмотки III, IV и V содержат по 33 витка провода ПЭВ-1 диаметром 0,25 мм. Между обмотками нужно проложить 2 слоя изоляции (на­пример, малярный скотч). Фазировка подключения обмоток указана на рис.2.

Резонансные конденсаторы С1-С10 допустимо применять только качественные, пленочные на напряжение не менее 1000 В. Предпочтительнее использовать конденсаторы типа К78-2. Такого же типа должен быть блокирующий конденса­тор С15.

Блок питания в настройке не нуждается и при исправ­ных деталях начинает работать сразу. Необходимо только проконтролировать величины напряжений для питания драй­веров 16…17 В. При проверке блока питания на его вход­ные клеммы GND и +300 В можно подать сетевое напряже­ние 220 В. Таким же образом следует запитывать блок пи­тания при настройке резонансной частоты.

Во время работы инвертора все его силовые элементы нагреваются. От того, как грамотно обдуваются эти элемен­ты, будет зависеть время непрерывной работы аппарата и его долговечность. Радиаторы с большой площадью нужно предусмотреть для входного выпрямителя VD14-VD21, тран­зисторов VT1-VT4 и выходного выпрямителя VD6, VD7. При­нудительное воздушное охлаждение необходимо также резо­нансному дросселю L1, сварочному трансформатору Т1 и ди­одам удвоителя VD10-VD13. Защитные термостаты TS1 и TS2 типа KSD250V устанавливают на радиаторы верхних ключей и выходных диодов. Все остальные элементы инвертора в обдуве и радиаторах не нуждаются.

Настройка резонансной частоты

Для настройки инвертора необходим ЛАТР и нагрузоч­ный реостат сопротивлением 0,15 Ом. Реостат должен вы­держивать кратковременное протекание тока до 200 А. За­зор магнитопровода резонансного дросселя выставляют при­мерно 1 мм. Между контактами 3 и 4 оптопары DA8 уста­навливают перемычку. Устанавливают «прошитый» микро­контроллер в блок управления.

Блок питания при настройке следует запитать отдельно. Для этого, не включая аппарат в сеть, на провода GND и +300 В блока питания нужно подать сетевое напряжение 220 В.

Силовая часть пока обесточена. После включения питания спустя 5 с должен включиться зуммер, затем звук должен прекратиться, и включиться реле. Нажимаем одновременно обе кнопки SB1 и SB2. Удерживаем кнопки до появления звукового сигнала зуммера. Отпускаем кнопки. Непрерыв­ный звук прекратится, и зуммер начнет издавать прерывис­тый сигнал с периодом примерно 2 с. Это соответствует ре­жиму настройки резонансной частоты.

Если все так, то с помощью осциллографа контролируем наличие двуполярных импульсов между затворами транзис­торов VT2 и VT4 частотой 30 кГц амплитудой не менее 15 В и ступенькой «мертвого времени» 2 мкс. Такой же сигнал должен быть между затворами VT1 и VT3. Если все так, запитываем силовую часть через ЛАТР и выставляем напря­жение 20…30 В.

К сварочным проводам можно включить лампочку на 12 В. Если лампочка светится, включаем в сварочные провода ре­остат сопротивлением 0,15 Ом и вольтметр постоянного то­ка. Выставляем на ЛАТРе напряжение 30…40 В и начинаем настройку. Кнопкам SB1 и SB2 уменьшаем или увеличиваем частоту инвертора. Пределы изменения частоты 30…42 кГц. Подстраивая частоту кнопками, добиваемся максимального напряжения на реостате. Если напряжение продолжает уве­личиваться при уменьшении частоты до 30 кГц, то необходи­мо увеличить зазор в магнитопроводе резонансного дроссе­ля и повторить настройку снова. Если при увеличении час­тоты до 42 кГц напряжение на реостате продолжает расти, необходимо уменьшить зазор в магнитопроводе резонансно­го дросселя и повторить настройку снова.

Нужно добиться резонанса, т.е. настроить схему так, что­бы увеличение или уменьшение частоты инвертора приводи­ло бы к уменьшению напряжения на реостате. При указан­ных на схеме элементах предпочтительней всего добиться такого зазора в резонансном дросселе, чтобы резонанс с на­грузкой 0,15 Ом возникал на частоте 33…37 кГц. Резонанс на большей частоте увеличит максимальный сварочный ток, но ключи и выходные диоды будут работать на пределе.

Как только резонансная частота настроена, нажимаем обе кнопки одновременно. После продолжительного звуко­вого сигнала произойдет запись значения резонансной час­тоты в энергонезависимую память микроконтроллера. Вра­щая потенциометр R18, проверяем работу частотного регу­лирования. Минимальная частота должна быть равна резо­нансной. При вращении потенциометра изменение частоты должно сопровождаться коротким звуковым сигналом (всего 17 ступеней).

Если все происходит именно так, собираем полностью схему инвертора. Удаляем перемычку между контактами 3 и 4 оптопары DA8. Включаем инвертор в сеть. Через 5 с про­звучит сигнал зуммера, затем включится реле, и звук пре­кратиться. Потенциометром R18 выставляем минимальную частоту (она же f МАКС. МОЩН.), соответствующую максималь­ному току. Кратковременно нагружаем инвертор реостатом сопротивлением 0,15 Ом и измеряем напряжение в нагруз­ке. Если это напряжение превышает 23 В, то можно считать настройку завершенной. Если меньше, то следует увеличить зазор в магнитопроводе резонансного дросселя и повторить настройку сначала.

В основу силовой части нашего самодельного сварочного полуавтомата инверторного типа взята схема асимметричного моста, или как его еще называют, “косой мост”. Это однотактный прямоходовый преобразователь. Преимущества такой схемы – простота, надежность, минимальное количество деталей, высокая помехоустойчивость. До сих пор многие производители выпускают свои изделия по схеме “косого моста”. Без недостатков тоже не обойтись – это большие импульсные токи от блока питания, меньший, чем в других схемах, КПД, большие токи через силовые транзисторы.

Блок-схема прямоходового преобразователя “косой мост”

Блок схема такого аппарата показана на рисунке:

Транзисторы силовые VT1 и VT2 работают в одной фазе, т.е.одновременно открываются и закрываются, поэтому по сравнению с полным мостом ток через них в два раза больше. Трансформатор TT обеспечивает обратную связь по току.
Узнать больше о всех типах инверторных преобразователей для сварочных аппаратов можно из книги .

Описание схемы инвертора

Полуавтомат сварочный инверторный, работающий в режимах ММА (дуговая сварка) и MAG (сварка специальной проволокой в газовой среде).

Плата управления

На плате управления установлены следующие узлы инвертора: задающий генератор с трансформатором гальванической развязки, блоки обратной связи по току и напряжению, узел управления реле, блок термозащиты, блок “антистик”.

Задающий генератор

Узел регулировки тока (для режима MMA) и задающий генератор (ЗГ) собраны на микросхемах LM358N и UC2845. В качестве ЗГ выбрана UC2845, а не более распространенная UC3845 ввиду более стабильных параметров первой.

Частота генерации зависит от элементов С10 и К19, и рассчитывается по формуле: f = (1800/(R*C))/2, где R и С в килоомах и нанофарадах, частота в килогерцах. В данной схеме частота составляет 49КГц.

Еще один важный параметр – коэффициент заполнения, рассчитываемый по формуле Кзап = t/T. Он не может быть более 50%, и на практике составляет 44-48%. Зависит он от соотношения номиналов С10 и R19. Если конденсатор брать как можно меньше, а резистор – как можно больше, то Кзап будет близок к 50%.

Сформированные ЗГ импульсы подаются на ключ VT5, работающий на трансформатор гальванической развязки T1 (ТГР), намотанный на сердечник EE25, применяемый в электронных блоках запуска люминесцентных ламп (электронных балластах). Все обмотки удаляются и наматываются новые согласно схеме. Вместо транзистора IRF520 можно использовать любой из этой серии – IRF530, 540, 630 и др.

Обратная связь по току

Как упоминалось ранее, для дуговой сварки важно стабильный ток на выходе, для полуавтоматической – неизменное напряжение. На трансформаторе тока TT организована обратная связь по току, он представляет собой ферритовое кольцо типоразмера К 20 х 12 х 5, одетое на нижний (по схеме) вывод первичной обмотки силового трансформатора. В зависимости от тока первичной обмотки T2 ширина импульсов задающего генератора уменьшается или увеличивается, поддерживая выходной ток неизменным.

Обратная связь по напряжению

Сварочный полуавтомат инверторного типа требует ОС по напряжению, для этого в режиме MAG переключателем S1.1 напряжение с выхода устройства подается на узел регулировки выходного напряжения, собранного на элементах R55, D18, U2. Мощный резистор К50 задает начальный ток. А контактами S1.2 ключ на транзисторе VT1 закорачивает на максимум тока регулятор R2, и ключ VT3 отключает режим “антистик” (отключение ЗГ при залипании электрода).

Блок термозащиты

Самодельный сварочный полуавтомат имеет в составе схему защиты от перегрева: это обеспечивает узел на транзисторах VT6, VT7. Датчики температуры на 75 град.С (их два, нормально замкнутые, соединены последовательно) установлены на радиатор выходных диодов и на один из радиаторов силовых транзисторов. При превышении температуры транзистор VT6 закорачивает на землю вывод 1 UC2845 и срывает генерацию импульсов.

Узел управления реле

Данный блок собран на микросхеме DD1 CD4069UB (аналог 561ЛН2) и транзисторе VT14 BC640. Эти элементы обеспечивают следующий режим работы: при нажатии на кнопку сразу включается реле клапана газа, примерно через секунду транзистор VT17 позволяет запуститься генератору и одновременно включается реле протяжного механизма.

Непосредственно реле, управляющие “протяжкой” и клапаном газа, а также вентиляторы питаются от стабилизатора на МС7812, смонтированном на плате управления.

Силовой блок на транзисторах HGTG30N60A4

C выхода ТГР импульсы, предварительно сформированные драйверами на транзисторах VT9 VT10, подаются на силовые ключи VT11, МЕ12. Параллельно выводам коллектор-эмиттер этих транзисторов подключены “снабберы” – цепочки из элементов С24, D47, R57 и C26, D44, R59, служащие для удержания мощных транзисторов в области допустимых значений. В непосредственной близости от ключей установлен конденсатор С28, собранный из 4-ёх емкостей 1мк х 630v. Стабилитроны Z7, Z8 необходимы для ограничения напряжения на затворах ключей на уровне 16 вольт. Каждый транзистор установлен на радиатор от компьютерного процессора с вентилятором.

Силовой трансформатор и выпрямительные диоды

Основной элемент схемы сварочного полуавтомата – мощный выходной трансформатор T2. Он собран на двух сердечниках E70, материал N87 фирмы EPCOS.

Расчет сварочного трансформатора

Витки первичной обмотки рассчитаны по формуле: N = (Uпит * tимп)/(Bдоп * Sсеч),
где Uпит = 320B – максимальное напряжение питания;
tимп = ((1000/f)/2)*К – длительность импульса, К = (Кзап*2)/100 = (0,45*2)/100 = 0,9 tимп = ((1000/49)/2)*0,9 = 9,2;
Вдоп = 0,25 – допустимая индукция для материала сердечника;
Sсеч = 1400 – сечение сердечника.
N = (320 * 9.2)/(0,25 * 1400) = 8.4, округляем до 9 витков.
Отношение витков вторички к первичке должно быть примерно 1/3, т.е. мотаем 3 витка вторичной обмотки.

Силовой трансформатор можно мотать и на другом типоразмере, расчет витков осуществляется по приведенной выше формуле. Например, для сердечника 2 х Е80 при f = 49Khz витков в первичке: 16, вторичке: 5.

Выбор сечения проводов первичной и вторичной обмоток, намотка трансформатора

Сечение проводов выбираем из расчета 1мм.кв = 10А выходного тока. Данный аппарат должен выдавать в нагрузке примерно 190А, поэтому берем сечение вторички 19мм.кв (жгут из 61 провода диаметром 0,63мм). Сечение первички выбирается в 3 раза меньше, т.е. 6мм.кв. (жгут из 20 проводов диаметром 0,63мм). Сечение провода в зависимости от его диаметра рассчитывается как: S = D²/1,27 где D – диаметр провода.

Намотка производится на каркас из текстолита 1мм, без боковых щечек. Каркас одет на деревянную оправку по размерам сердечника. Мотается первичная обмотка (все витки в один слой). Затем 5 слоев плотной трансформаторной бумаги, наверх – вторичная обмотка. Витки сжаты пластмассовыми стяжками. Затем каркас с обмотками снимается с оправки и пропитывается лаком в вакуумной камере. Камера была сделан из литровой банки с плотной крышкой и выведенным шлангом, одетым на всасывающую трубку компрессора от холодильника (можно просто опустить транс в лак на сутки, думаю, тоже пропитается).