Измерение сопротивления изоляции и испытание электрооборудования. Что такое измерение сопротивления изоляции и почему это важно. Схема проверки сопротивления

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах - электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают - испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования . Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый (доступны мегомметры с диапазоном до 999 ГОм).

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

Результат моих измерений - x МОм. Это нормально?

Какое должно быть сопротивление изоляции - на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n - рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

c. Между высоковольтной обмоткой и низковольтной обмоткой

d. Между высоковольтной обмоткой и землей

e. Между низковольтной обмоткой и землей

Подробнее о приборах для проверки изоляции высоковольтных кабелей смотрите в .

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов (кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В - 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ - не ниже четвертой (IV) , у члена бригады –должна быть третья группа (III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования (ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции. Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия. Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.

Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге - ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается. Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей - на напряжение 2,5 кВ. Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ,глава 1.8 в таб. 1.8.34. Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.

Порядок измерения сопротивления изоляции

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом. Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом. Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей. При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) - к проводнику тока».

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Правила измерения регулируются ГОСТ Р 50345-99 и ГОСТ Р 50030.2-99, которых рассматриваются разные типы УЗО и АВ, первый устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции 2 или 5 МОм (п.п. 1,2 и п.3 - соответственно), второй документ устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции не менее 0,5 МОм. Согласно ГОСТам, измерение сопротивления изоляции электрооборудования такого типа производятся:

  1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
  2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
  3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При работе с измерительными приборами в части замеров сопротивления изоляции УЗО и АВ, необходимо помнить о разнице параметров выходного напряжения и наибольшего значения измеряемого сопротивления у разных видов измерительных приборов: только в семействе мегаомметров Ф4100 насчитывается пять разных типов.

Все виды измерений сопротивления изоляции электрооборудования проводятся нашими специалистами в точном соответствии с требованиями ГОСТ Р, ПТЭЭП, ПУЭ, ОиНИЭ и других нормативных документов, оформляются протоколами со всеми необходимыми приложениями. Электроизмерительная лаборатория имеет все разрешительные документы для проведения видов работ.

1.ЦЕЛЬ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ.

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

2. МЕРЫ БЕЗОПАСНОСТИ

2.1. Организационные мероприятия

В электроустановках напряжением до 1000 В измерения выполняются по распоряжению двумя работниками, один из которых должен иметь группу по электробезопасности не ниже III.

В электроустановках до 1000 В, расположенных в помещениях, кроме особо опасных в отношении поражения электрическим током, работник, имеющий группу III и право быть производителем работ, может проводить измерения единолично.

Измерения сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двумя работниками, имеющими IV и III группу по электробезопасности.

В случаях, когда измерения мегаомметром входят в содержание работ по испытаниям (например испытания электрооборудования повышенным напряжением промышленной частоты), оговаривать эти измерения в наряде или распоряжении не требуется.

Положения настоящей методики обязательны к использованию специалистами электролаборатории в Краснодаре и Краснодарском крае ООО "Энерго Альянс"

2.2. Технические мероприятия

Перечень необходимых технических мероприятий определяет лицо, выдающее наряд или распоряжение в соответствии с требованиями ПОТЭЭ. Измерения сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

3. НОРМИРУЕМЫЕ ВЕЛИЧИНЫ

Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов Правил устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В соответствии с ГОСТ Р 50571.16-99 нормируемые величины сопротивления изоляции электроустановок зданий приведены в таблице 1

Таблица 1.

Номинальное напряжение цепи, В

Испытательное напряжение постоянноготока, В

Сопротивление изоляции, МОм

Системы безопасного сверхнизкого напряжения (БССН) и функционального сверхнизкого напряжения ФССН)

0,25

До 500 включительно, кроме систем БССН и ФССН

0,5 *

Выше 500

1000

1,0

* Сопротивление стационарных бытовых электрических плит должно быть не менее 1 МОм.

Вместе с тем, в соответствии с гл. 1.8 ПУЭ для электроустановок, напряжением до 1000 В допустимые значения сопротивления изоляции представлены в таблице 2.

Таблица 2.

Испытуемый элемент

Напряжение мегаомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

1. Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях)

500-1000

2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 1

500-1000

3. Цепи управления, защиты, автоматики измерений, а так же цепи возбуждения машин постоянного тока, присоединенные к силовым цепям

500 - 1000

4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 2

5. Электропроводки, в том числе осветительные сети 3

1000

6. Распределительные устройства 4 , щиты и токопроводы (шинопроводы)

500 - 1000

1 Измерение производится со всеми присоединенными аппаратами (катушки проводов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.)

2 Должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых элементов.

3 Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.

4 Измеряется сопротивление изоляции каждой секции распределительного устройства.

Анализ этих требований показывает противоречия в части тестирующего напряжения и сопротивления изоляции для вторичных цепей напряжением до 60 В (ПУЭ, гл. 1.8) и систем БССН и ФССН, входящих в этот диапазон (50 В и ниже), согласно ГОСТ 50571.16-99.

Кроме того сопротивление внутренних цепей вводно-распределительных устройств, этажных и квартирных щитков жилых и общественных зданий в холодном состоянии в соответствии с требованиями ГОСТ 51732-2001 и ГОСТ 51628-2000 должно быть не менее 10 МОм (по ПУЭ, гл. 1.8 - не менее 0,5 МОм).

В данной ситуации при определении нормированных величин сопротивления изоляции до введения в действие соответствующих технических регламентов следует руководствоваться более четкими требованиями.

4. ПРИМЕНЯЕМЫЕ ПРИБОРЫ

Для изменения сопротивления изоляции будет применяться мегаомметр Е6-24 с испытательным напряжением от 50 до 2500 В (шаг установки 10 В).

Пределы допускаемой основной абсолютной погрешности установки испытательного напряжения, %: от 0 до плюс 15.

Ток в измерительной цепи при коротком замыкании не более 2 мА.

Диапазоны измерения сопротивления

Пределы допускаемой основной абсолютной погрешности

от 1кОм до 999 МОм

(0,03×R+ 3 е.м.р.)

от 1,00 до 9,99 ГОм

(0,05×R + 5 е.м.р.) (испытательные напряжения менее 250 В)

от 10,0 до 99,9 ГОм

(0,05×R + 5 е.м.р.) (испытательные напряжения не менее 500 В)

от 100 до 999 ГОм

(0,15×R + 10 е.м.р.) (испытательные напряжения не менее 500 В)

Мегаомметр обеспечивает автоматическое переключение диапазонов и определение единиц измерения.

Погрешность нормирована при использовании кабеля измерительного РЛПА.685551.001.

5. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЭЛЕКТРООБОРУДОВАНИЯ

5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

При измерении сопротивления изоляции необходимо учитывать следующее:

- измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм 2 производится мегаометром на 1000 В, а выше 16 мм 2 и бронированных - мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

- на 2- и 3-проводных линиях - три замера: L-N, N-РЕ, L-PE;

На 4-проводных линиях - 4 замера: L 1 -L 2 L 3 PEN, L 2 -L 3 L 1 PEN, L 3 -L 1 L 2 PEN, PEN-L 1 L 2 L 3 , или 6 замеров: L 1 -L 2 , L 2 -L 3 , L 1 -L 3 , L 1 -PEN, L 2 -PEN, L 3 -PEN;

На 5-проводных линиях - 5 замеров: L 1 -L 2 L 3 NPE, L 2 -L 1 L 3 NPE, L 3 -L 1 L 2 NPE, N-L 1 L 2 L 3 PE, PE-NL 1 L 2 L 3 , или 10 замеров: L 1 -L 2 , L 2 -L 3 , L 1 -L 3 , L 1 -N, L 2 -N, L 3 -N, L 1 -PE, L 2 -РЕ,L 3 -РЕ, N-PE.

Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 1 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.

5.2. Измерение сопротивления изоляции силового электрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5 С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.

Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R 60) к измеренному сопротивлению изоляции через 15 секунд (R 15), при этом:

К абс = R 60 /R 15

При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В. Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора. При этом R 60 должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20 %, а его величина должна быть не ниже 1,3 при температуре 10 - 30 С. При невыполнении этих условий трансформатор подлежит сушке. Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в таблице 3.

Сопротивление изоляции автоматических выключателей и УЗО производятся:

1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.

3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой. При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р 50345-99) и

УЗО при измерениях по пп. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 - не менее 5 Мом.

Для остальных автоматических выключателей (ГОСТ Р 50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 Мом.

Таблица 3. Минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000В. (Приложение 3; 3.1 ПТЭЭП)

Наименование элемента

Напряжение

Сопротивление

Примечание

мегаомметра, В

изоляции, МОм

Электроизделия и аппараты на

номинальное напряжение, В:

до 50

Должно

свыше 50 до 100

соответствовать

свыше 100 до 380

500 - 1000

указаниям

свыше 380

1000 - 2500

изготовителей,

но не менее 0,5

Распределительные устройства, щиты

1000 - 2500

Не менее 1

При измерениях полупроводниковые приборы в

и токопроводы

изделиях должны быть зашунтированы

Электропроводки, в том числе

1000

Не менее 0,5

Измерения сопротивления изоляции в особо

осветительные сети

опасных помещениях и наружных помещениях

производятся 1 раз в год. В остальных случаях

измерения производятся 1 раз в 3 года. При

измерениях в силовых цепях должны быть приняты

меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.

полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.

Вторичные цепи распределительных

1000 - 2500

Не менее 1

Измерения

производятся

со

всеми

устройств, цепи питания приводов

присоединенными

аппаратами

(катушки,

выключателей и разъединителей, цепи

контакторы, пускатели, выключатели, реле,

управления, защиты, автоматики,

приборы, вторичные обмотки трансформаторов

телемеханики и т.п.

напряжения и тока)

Краны и лифты

1000

Не менее 0,5

Производится не реже 1 раз в год

Стационарные электроплиты

1000

Не менее 0,5

Производится при нагретом состоянии плиты не

реже 1 раз в год

Шинки постоянного тока и шинки

500 - 1000

Не менее 10

Производится при отсоединенных цепях

напряжения на щитах управления

Цепи управления, защиты,

500 - 1000

Не менее 1

Сопротивление изоляции цепей, напряжением до 60

автоматики, телемеханики,

В, питающихся от отдельного источника,

возбуждения машин постоянного тока

измеряются мегаомметром на напряжение 500 В и

на напряжение 500 - 1000 В,

должно быть не менее 0,5 МОм

присоединенных к главным цепям

Цепи, содержащие устройства с

микроэлектронными элементами,

рассчитанные на напряжение, В:

до 60

Не менее 0,5

выше 60

Не менее 0,5

Силовые кабельные линии

2500

Не менее 0,5

Измерение производится в течение 1 мин.

Обмотки статора синхронных

1000

Не менее 1

При температуре 10 - 30 С

электродвигателей

Вторичные обмотки измерительных

1000

Не менее 1

Измерения

производятся

вместе

трансформаторов

присоединенными к ним цепями

Анализ требований ПУЭ (приемо-сдаточные испытания) и ПТЭПП (эксплуатационные испытания) к минимально допустимым значениям сопротивления изоляции показывает наличие серьезных противоречий, а именно: для распределительных устройств при приемо-сдаточных испытаниях достаточное сопротивление изоляции 0,5 МОм, а при межремонтных профилактических - 1 МОм.

Данное обстоятельство может привести к тому, что при приемо-сдаточных испытаниях РУ может быть признано годным, а при первых межремонтных - забракованным (при 0,5 < R из < 1 МОм).

5.3. Порядок проведения измерений

При измерении сопротивления изоляции следует учитывать, что для присоединения мегаомметра к испытываемому объекту необходимо пользоваться гибкими проводами с изолирующими рукоятками на концах и ограничительными кольцами перед контактными щупами. Длина соединительных проводов должна быть минимальной исходя из условий проведения измерений, а сопротивление их изоляции не менее 10 МОм. Электролаборатория в Краснодаре и Краснодарском крае ООО "Энерго Альянс" для измерения сопротивления изоляции использует мегаомметр Е6-24 или его модификацию Е6-32.

5.3.1 Измерения сопротивления изоляции мегаомметром Е6-24 проводятся в следующей последовательности:

1. Проверить отсутствие напряжения на испытываемом объекте;

2. Очистить изоляцию от пыли и грязи вблизи присоединения мегаомметра к испытываемому объекту;

3. Подключение кабелей к мегаомметру Е6-24 для проведения измерения

сопротивления изоляции на примере кабеля показано на рисунке 1.

Рисунок 1.

Для измерения сопротивлений более 10 ГОм с заданной точностью необходимо подключить экранированный измерительный кабель РЛПА.685551.001, как показано на рисунке

Рисунок 2.

Для исключения влияния поверхностных токов утечки (например, вызванных загрязнением поверхности измеряемого объекта), используйте схемы подключения с тремя измерительными кабелями, как показано на рисунках 3 и 4.

Рисунок 3. Подключение к защитному кольцу

Рисунок 4. Подключение к трансформатору

В первом случае используется защитное кольцо (отрезок фольги, неизолированный провод и т.п., на рисунке закрашен черным цветом) одетое на изолятор одного из проводников, во втором - экранируется корпус (как вариант, сердечник) трансформатора. При измерении сопротивления изоляции свыше 10 ГОм также рекомендуется применять экранированный измерительный кабель.

При использовании кабеля измерительного экранированного периодически необходимо проверять электрическое сопротивление между сигнальной и экранной вилками. Сопротивление должно быть не менее 3 ГОм при испытательном напряжении 2500 В.

4. Включить прибор

5. Кнопкой «Режим» выбрать необходимое испытательное напряжение.

6. Для начала измерений дважды нажать кнопку « R x » Далее в течении установленного времени произвести измерения. Следует учитывать, что достоверными являются установившиеся показания.

Для досрочного прекращения измерения нажмите кнопку « Rx ». Результаты проведенного измерения отображаются на экране в течении 20 сек. После этого мегаомметр переходит в режим измерения напряжения.

Для кратковременных измерений нажмите и удерживайте кнопку « Rx ». При отпускании кнопки измерение прекращается.

По окончании измерения автоматически начинается снятие остаточного напряжения с объекта, текущее значение которого отображается на индикаторе: « U н» - измеренное напряжение на объекте.

7.Оценить погрешность измерения.

5.3.2 Вычисление коэффициентов абсорбции и поляризации.

Коэффициент абсорбции (К АБС) применяется для оценки степени увлажнения изоляции кабельных линий, трансформаторов, электродвигателей и т.п.: оценивается скорость заряда абсорбционной емкости (емкости вызванной неоднородностями и загрязнением материала, включениями воздуха и влаги) изоляции при приложении испытательного напряжения. Коэффициент абсорбции автоматически вычисляется по результатам измерения сопротивления изоляции через 15 секунд ( R 15) и 60 секунд (R 60) после начала измерения:

К АБС = R 60/ R 15

Состояние изоляции считается отличным, если К АБС >1.6 (происходил длительный процесс заряда абсорбционной емкости малыми токами), опасным – если К АБС <1.3 (происходил кратковременный процесс заряда абсорбционной емкости большими токами) в диапазоне температур от 10 ºС до 30 ºС. В последнем случае, а также при снижении коэффициента абсорбции более чем на 20% относительно заводских данных, рекомендуется сушка изоляции.

Для индикации коэффициента абсорбции во время или по окончанию измерения нажмите кнопку "Дисп Меню"


Рисунок 5. Результат измерения сопротивления изоляции. (Вариант отображения с коэффициентом абсорбции)

Коэффициент поляризации (КПОЛ) применяется для оценки степени старения изоляции кабельных линий, дорогостоящих трансформаторов и электродвигателей. Он учитывает изменение структуры диэлектрика и, как следствие, повышение способности заряженных частиц и диполей перемещаться под действием электрического поля. Коэффициент КПОЛ автоматически вычисляется по результатам измерения сопротивления изоляции через 60 секунд ( R 60) и 600 секунд (R 600) после начала измерения:

К пол = R 600 /R 60

КПОЛ<1 - ресурс изоляции исчерпан, начинается процесс снижения сопротивления изоляции (возможно, до неприемлемого уровня);

1<КПОЛ<2 - ресурс изоляции снижен, но дальнейшая эксплуатация возможна;

2<КПОЛ<4 - ресурс изоляции достаточен, нет ограничений на эксплуатацию; КПОЛ>4 - ресурс изоляции не снижен, нет ограничений на эксплуатацию.

Примечание - Решение об эксплуатации изолятора с К ПОЛ <1 должно приниматься на основе дополнительных исследований: более частые проверки состояния изоляции, прогнозирование момента уменьшения сопротивления до неприемлемого уровня.

Для вычисления и индикации коэффициента поляризации необходимо в меню установить режим «К поляризации» и нажимая кнопку «Меню» установить соответствующий вариант отображения.


Рисунок 6. Результат измерения сопротивления изоляции (вариант отображения с коэффициентом поляризации)

Примечание 1. - Если время измерения было не достаточно для вычисления коэффициентов абсорбции или поляризации, то в соответствующих пунктах проставляются прочерки.

Примечание 2. - При проведении измерений на ряде объектов обратите внимание на следующее:

- если один из контактов измеряемого сопротивления заземлен, то к нему

быть иной, и это необходимо заранее это выяснить. Полярность испытательного напряжения указана на гнёздах мегаомметра.

- на объекте может присутствовать наведенное постоянное напряжение. В этом случае рекомендуется проводить измерения дважды - со сменой полярности приложенного испытательного напряжения. Это позволит определить истинное значение сопротивления изоляции как среднее значение двух измерений.

Внимание! После каждого измерения необходимо снимать емкостной заряд путем кратковременного заземления частей испытываемого объекта, на которые подавалось выходное напряжение мегаомметра.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

По результатам измерения сопротивления изоляции специалистами электролаборатории ООО "Энерго Альянс" оформляется протокол.

Самая главная причина повышенного внимания к кабельно-проводниковой продукции такова: мы полностью зависим от электричества. Всё в нашей жизни – от детских игрушек и компьютеров, до работы заводов и фабрик – продолжает свою деятельность благодаря электричеству. А так как для передачи электроэнергии другого способа, кроме проводов, нет, то их стабильная и безотказная работа – задача первостепенной важности.
И если сравнить требования непосредственно к токопроводящим жилам с требованиями к изоляции, то последних окажется на порядок больше. По большому счёту, у проводника задач всего две: передать электроэнергию, и по пути не «растерять» её. У кабельной изоляции задач, конечно больше.

Во-первых, изоляция защищает жилы от механических повреждений , а так же от воздействия окружающей среды, ведь кабели прокладываются и в воде, и в земле и штробах стен. Безусловно, для таких особенных способов прокладки правилами устанавливаются дополнительные требования защиты кабелей и проводов от повреждений (лотки, трубы и прочее). Но и сам кабель и его изоляция должны быть устойчивыми к воздействию извне. Поэтому на рынке существуют кабели с многослойной и разнокомпонентной изоляцией, а также бронированные провода.

Во-вторых, изоляция должна являться непреодолимым барьером для проводников внутри самого кабеля . Ни для кого не секрет, что замыкание токопроводящих жил не приведёт ни к чему хорошему. А так как большинство кабелей несёт в себе и фазную и нулевую нагрузку, изоляция между ними должна быть особенно надёжной.

В третьих, как мы уже обозначили выше, изоляция защищает человека от повреждения электрическим током. Конечно же, это не значит, что при работе с изолированными кабелями электрики могут работать голыми руками. Нет! В этом случае кабельная изоляция рассчитана в первую очередь на упразднение случайных соприкосновений. От таких случайностей кабель защищается изоляцией, а человек – резиновыми перчатками и ковриком, «правильным» инструментом, защитными очками, и так далее, в соответствии с Межотраслевыми Правилами по технике безопасности.

Ещё одно немаловажно требование, касающееся долговечности работы кабеля. Это, безусловно, тоже задача изоляции. В первую очередь здесь подразумевается сохранение герметичности токоведущих жил . Попадание на них, например, воды очень быстро вызовет коррозию и негативным образом скажется на работе кабеля в целом. Для обеспечения этого требования используют промасленную бумажную изоляцию.

Продолжать этот список можно ещё достаточно долго. Существует невероятное множество кабелей, проводов, шнуров с самой различной изоляцией, разработанной под определённые требования. Отметим лишь, что какой бы ни была изоляция, она должна оставаться в меру гибкой, чтобы не сломаться во время производства, упаковки, транспортировки и монтажа.

Периодичность проведения замеров сопротивления изоляции

Ещё одна причина, по которой замер сопротивления изоляции кабелей настолько популярен, – это необходимость постоянного его проведения. Дело в том, что кабельная изоляция со временем теряет свои свойства. Несмотря на то, что её изготавливают из материалов, которые способны прослужить надёжной защитой в течение многих лет, время от времени проверять её состояние всё же необходимо. Вдобавок к этому, в процессе эксплуатации токовая нагрузка на кабель может увеличиваться, потому что количество энергопотребителей растёт каждый день.

Если рассмотреть в качестве примера жилые дома, которые были построены несколько десятилетий назад, то нетрудно догадаться, что сегодня количество электроприборов в квартирах несравнимо больше. А на момент строительства электрическая проводка внутри здания, равно как и сечение вводного кабеля, не были рассчитаны на такие нагрузки. Результат – повышенная нагрузка на кабель, нагрев кабеля, преждевременный износ и неизбежная его замена.

Чтобы избежать этих неприятностей, за состоянием кабелей и кабельной изоляции необходимо постоянно следить. По сути, это техническое обслуживание электропроводки, в которое входит проведение комплекса измерений пропускной способности кабеля и замер сопротивления изоляции.

  1. Производство .
    До того, как кабель обретёт своё место (будет проложен и смонтирован), его уже неоднократно проверяли и измеряли его технические свойства.
    Как правило, современные линии для производства кабельно-проводниковой продукции – это линии полного цикла. То есть, на входе происходит загрузка всех необходимых материалов, а на выходе – бухта кабеля или готовый к транспортировке барабан. Но прежде чем отправить готовую продукцию на склад или продать её, необходимо убедиться, что кабель соответствует всем требованиям. Для этого электротехническая лаборатория проводит комплекс измерений, среди которых в обязательном порядке замер сопротивления изоляции. Если барабан с кабелем или бухта не проходит тесты, значит, где-то был нарушен технологический процесс, и произведённый кабель не подлежит эксплуатации.
  2. Монтаж .
    Во время производства электромонтажных работ кабельную изоляцию так же необходимо проверить на их целостность и готовность к прокладке. Испытание изоляции производится в обязательном порядке, при чём, как до монтажа кабеля, так и после него. Нужно отметить, что проверка состояния кабельной изоляции должна проводиться до и после каждой операции с кабелем.
    Доставили барабан с кабелем на строительную площадку – произвели замер.
    Если кабель на барабане необходимо прогреть, то после него нужно произвести замер.
    Размотали кабель перед прокладкой – произвели замер.
    Проложили кабель от источника до потребителя – произвели замер.
    Только после проведения замеров сопротивления изоляции на всех этапах монтажа с положительным результатом может быть дано разрешение на подачу электроэнергии.
  3. Эксплуатация .
    Как мы уже писали выше, в период эксплуатации любой энергосистемы, следить за состоянием кабелей – первоочередная задача. Кабельная изоляция со временем рассыхается и теряет свои изолирующие свойства. Помимо этого, от чрезмерных нагрузок кабели могут нагреваться, что так же негативным образом сказывается на изоляции. В зданиях новой постройки на кабель может оказать отрицательно влияние такое явление как усадка. Да и вообще, кабели очень часто подвергаются воздействию, которое не лучшим образом сказывается на их работоспособности: почва, вода, морской воздух, грызуны, в конце концов! Поэтому очень важно постоянно следить за изоляцией кабельных трасс. Для кабельных линий общего назначения такие проверки должны проводиться не реже одного раза в три года, а для кабелей, находящихся в агрессивной или опасной среде – не реже одного раза в год.

Оборудование для проверки изоляции кабелей

Наверное, все в школе, на уроках физики, видели и пробовали работать такими приборами амперметр, вольтметр и омметр. Первый – для измерения силы тока, второй – для измерения напряжения, а третий измерял сопротивление проводника.
В случае с изоляцией тоже используют омметр. Но так как изоляция должна выдерживать повышенную токовую нагрузку, то её сопротивление измеряется в мегаоммах. Отсюда и название измерительного прибора – мегаомметр (или мегометр).
Сегодня на рынке существует три разновидности этого прибора.

  1. Мегаомметры, произведённые до 2000-х годов (аналоговые). Они представляют собой коробку, размером, приблизительно, с двухлитровый тетрапак, с подключаемыми клеммниками и крутящейся ручкой. Основная составляющая такого прибора – это динамо-машина, После подключения прибора к кабелям, с помощью кручения ручки, динамо-машина нагнетает необходимый уровень избыточного напряжения при постоянном токе в проводниках.
    Несмотря на то, что такие приборы имеют достаточно большую массу и габариты, они до сих пор пользуются популярностью и стоят на вооружении многих электротехнических лабораторий.
  2. Современные мегаомметры (цифровые) – измерительные приборы, в которых устранены самые главные недостатки предшественников: излишняя масса и большие габариты. По своей массе и размерам их можно сравнить с обычным блокнотом, формата А5. Очень часто такие приборы оснащают прорезиненным корпусом, поэтому их очень удобно держать в руке. Более того, никаких «ручек-крутилок» на современных мегаомметрах нет, и процесс измерения сопротивления изоляции кабелей максимально автоматизирован. Источником тока в них являются гальванические элементы или аккумуляторные батареи. Более того, так как прибор цифровой, его оснащают многими полезными функциями: автоматическое выставление нужных параметров тока для различных категорий энергопотребителей, возможностью запоминания и сохранения результатов измерений и прочими.
  3. В последние годы очень популярными стали измерительные комплексы – мультиметры. То есть, в одном корпусе заключены несколько приборов, например, в паре с мегаомметром может работать и вольтметр. Для техников, постоянно производящих замеры, такое техническое решение является очень важным. При этом, ни размеры ни масса такого прибора не мешают носить его в кармане спецодежды.

Ну и конечно, нельзя не упомянуть, что любой измерительный прибор должен проходит ежегодную поверку. Такую проверку осуществляют специализированные метрологические и испытательные центры. Результатом поверки является заключение о состоянии измерительного прибора и специальная голографическая наклейка на корпусе, с указанием даты последней поверки.
Для проведения только лишь одного измерения, наряду с мегаомметром в электротехнической лаборатории используется ещё ряд вспомогательных приборов и приспособлений. Все они должны так же проходить поверку и иметь сопутствующую разрешительную документацию.

Суть, нормы и технология измерения сопротивления изоляции

Итак, мы добрались до самого главного – технологической части производства работ. И прежде, чем приступить к описанию тонкостей замеров сопротивления изоляции различных кабелей, необходимо объяснить физическую суть этого процесса.
На тех же уроках физики в школе нам объясняли, что в природе существуют материалы, которые по своим физическим свойствам могут быть либо проводниками электричества, либо полупроводниками, либо диэлектриками. Первые проводят электрический ток, при чём, делают это очень хорошо и с минимальными потерями. Вторые тоже проводят электрический ток, но делают это менее охотно. Последний тип материалов не проводит электричество вовсе. Эти свойства материалам придаёт такой параметр, как сопротивление. Зависимость токопроводящей способности материалов и их сопротивления обратно пропорциональны. То есть, чем меньше сопротивление у материала, тем лучше он проводит электричество, и наоборот.

Теперь вернёмся к нашим баранам, а точнее – к кабельной изоляции. Понятно, что жилы кабеля изготавливают из проводников, которые способны передавать электрический ток очень хорошо, с минимальными потерями даже на большие расстояния. Так же понятно, что изоляцию токопроводящих жил (и кабеля в целом) делают из диэлектрических материалов. Таким образом, изолированные жилы кабеля никогда не пересекутся, а, следовательно, не будет утечки электроэнергии и короткого замыкания. Вроде, всё логично и понятно.
Но, если жилы кабелей полностью изолированы друг от друга и никак не взаимодействуют между собой, то каким образом и за счёт чего производится измерение сопротивления изоляции? Какой параметр измеряет мегаомметр, если при измерениях все жилы кабеля разведены и никак не соприкасаются друг с другом? Так и напряжение, вырабатываемые мегаомметром, постоянные, следовательно, никаких наводок друг на друга кабели не испытывают.
Чтобы ответить на этот вопрос нужно помнить, что любая диэлектрическая основа изоляции со временем теряет свои свойства.

И процесс этот ускоряется из-за того, что изоляционный материал находится в постоянном контакте с металлической основой кабеля, находящейся под напряжением. Помимо этого, износ оболочки происходит по многим причинам. Например, резиновая изоляция больше других подвержена высыханию, и, как следствие, она не просто становится более жёсткой и хрупкой, она становится тонкой. Пластиковая изоляция тоже не вечна и со временем приходит в негодность. А если кабель находится в агрессивной или опасной среде, то его защитный ресурс может закончиться спустя всего несколько лет.

И что же происходит с электрическим током, который пропускают по жилам с плохим защитным слоем? Изоляция начинает его пропускать, и токоведущие жилы кабеля начинают между собой взаимодействовать. Конечно, в таких малых дозах это взаимодействие невозможно увидеть человеческим глазом, но мегаомметр эти изменения, безусловно, улавливает. Если сказать проще, то изоляционный слой со временем переходит из состояния диэлектрика в полупроводник. И до тех пор, пока этот переход остаётся в пределах допустимых значений, кабель допускается эксплуатировать.

Помимо этого, утечка электрического тока может проходить через микротрещины кабельной изоляции, и тоже до того момента, пока эта утечка остаётся в допустимых пределах. А если изоляция не герметична, то внутрь кабеля могут попадать влага и пыль, делая процесс износа изоляции более стремительным и неизбежным.

Когда кабель абсолютно новый, то результат замера сопротивления изоляции будет стремиться к бесконечности, ведь утечки тока нет, и токопроводящие жилы кабеля никак между собой не взаимодействуют. Но по мере «старения» изоляции, результаты замеров будут всё хуже и хуже. Когда кабель совсем старый, то во время замера может произойти даже короткое замыкание. Поэтому опытные техники никогда не подают на испытуемый кабель полную нагрузку, а делают это постепенно, как написано в МЭК 364-6-61.

В целом, говоря о нормативных документах в области электроизмерений, нужно отметить, что помимо внушительного списка различных правил и регламентов проведения замеров, у каждой электротехнической лаборатории должны быть методики и инструкции собственной разработки, предназначенные для техников и инженеров КИПиА, непосредственно производящих замеры. Эти документы разрабатываются на этапе образования лаборатории, утверждаются в Ростехнадзоре, и служат исключительно для внутреннего пользования в каждой электротехнической лаборатории. Мы разберём основные принципы и этапы проведения замеров изоляции кабелей.

Подготовительные работы

Любая работа в сфере строительства начинается с изучения эксплуатационной документации и объекта в целом. Техники должны тщательно изучить однолинейные схемы расключения шкафов и поэтажные планы разводки кабелей. Более того, так как величина сопротивления диэлектрической части кабеля не является постоянной, и зависит от нескольких факторов (например, температура окружающей среды, сроки эксплуатации кабелей и т.п.), специалистам необходимо так же детально изучить объект испытаний. Всё это необходимо для боле точных конечных результатов проверки.

Любые испытания кабельной продукции связаны с подачей на проводники электроэнергии. В связи с этим, нужно защитить от поражения людей и электроприборы. Первым делом, объект полностью обесточивается. Далее необходимо отсоединить автоматы, УЗО, защитные вставки и прочие устройства.
Процесс защиты энергопотребителей (лампы, электрооборудованияие и т.п.) заключается в отключении их от сети. Работа достаточно простая, но ёмкая по времени и трудозатратам. После отсоединения проводников от энергопотребителей следует завершить процесс заземлением всех кабелей, которые планируется испытывать. Это следует делать в обязательном порядке, так как кабели могут сохранять остаточный электрический заряд.
Защиту от поражения людей осуществляют путём огораживания мест проведения испытаний и установкой предупреждающих знаков и табличек. При необходимости, перед местом выполнения измерительных работ можно выставить охрану.

Замер сопротивления изоляции двухжильных кабелей

Самым простым, понятным и наглядным примером проведения замера сопротивления изоляции является кабель, состоящий из двух жил – пары. Щупы мегаомметра закрепляют на каждой жиле и подают напряжение. Уровень сопротивления изоляции для всех кабелей, проводов и шнуров, рассчитанных на рабочую нагрузку до 220В, должен быть не менее 0,5 МОм. Если кабель состоит из нескольких пар (например, магистральный телефонный кабель), то замеры нужно проводить как между жилами каждой пары, так и между жилами разных пар.

Замер сопротивления изоляции трёхжильных кабелей

В данном случае речь идёт о силовых и некоторых контрольных кабелях. Замер сопротивления изоляции здесь производится по кругу, парами. Сначала между жилами «фаза» – «ноль», затем «ноль» – «земля», и, наконец, «земля» – «фаза». Так как все жилы должны иметь одинаковую изоляцию, то и показания мегаомметра должны быть одинаковыми. Изоляция силовых трёхжильных кабелей, рассчитанных на рабочее напряжение до 1000В, должна иметь сопротивление не менее 0,5 МОм. А если замер производится на контрольном кабеле, то его сопротивление изоляции не должно быть меньше 1 МОм.

Замер сопротивления изоляции многожильных кабелей

Замер сопротивления изоляции у многожильных кабелей имеет ту же структуру что и у парных. Например, чтобы измерить сопротивление изоляции у четырёхжильного кабеля (три «фазы» и «ноль») необходимо сделать шесть замеров. Пятижильный кабель – десять замеров.
Силовые кабели, рассчитанные на номинальную рабочую нагрузку свыше 1000В, должны иметь изоляцию, сопротивление которой не может быть менее 10 МОм.

В заключение этого раздела необходимо так же обратить внимание на испытательное напряжение , которое, безусловно, отличается от номинального.

  1. Если кабель рассчитан на повседневную работу под напряжениемдо 100 В , то максимальное напряжение, при котором производится замер сопротивления изоляции, 100 В;
    2. Если кабель работает под напряжениемот 100 до 500 В , то замер сопротивления изоляции производится под напряжением от 250 до 1000 В;
    3. Кабельные линии, рассчитанные на номинальную нагрузку от 500 до 1000 В необходимо испытывать напряжением от 500 до 1000 В;
    4. Ну а если в номинальное рабочее напряжение кабеля превышает 1000 В , то замер сопротивления производится нагрузкой 2500 В.

Итоги проведения измерений: технические отчёты, протоколы, акты

Чтобы измерения не остались в памяти людей, которые их проводили или в памяти цифрового мегаомметра, их результаты заносят в специальный документ – протокол . Сам по себе протокол может состоять как из одного вида испытаний, так и являться сборным документом после комплекса измерений. Изначально форма протокола разрабатывается каждой лабораторией самостоятельно и утверждается в органах Ростехнадзора вместе с методиками и инструкциями.

Протоколы объединяются в технический отчёт , помещаются в папку, снабжаются титульным листом и перечнем замеров, которые были проведены на объекте. Также электротехнические лаборатории комплектуют папку с техническим отчётом прочими необходимыми документами: Свидетельством ЭТЛ, паспортами и свидетельствами о поверке приборов, документами на специалистов, проводивших замеры, и т.п. Документация составляется таким образом, чтобы у надзорных органов при проверке не возникло дополнительных вопросов о проделанной на объекте работе.

Если замеры проводились в рамках строительства или реконструкции объекта, то технический отчёт в обязательном порядке включается в состав исполнительной документации. А если испытания кабельной системы были плановыми, то технический отчёт передаётся заказчику.

Сами протоколы представляют собой сводную таблицу, в которой отражаются абсолютно все результаты испытаний замеров сопротивления изоляции каждого проверенного кабеля. Это наиболее удобная и компактная форма записи большого количества информации. В шапке каждого протокола указывается наименование замера, дата проведения, а так же наименование компании и присвоенный номер электротехнической лаборатории. На последней странице каждого протокола, помимо подписей ответственных за проведение замера лиц, указывается наименование измерительного прибора и дата проведения последней поверки.

Передвижная электротехническая лаборатория: особенности испытания кабелей

Любая передвижная электротехническая лаборатория, конечно же, может проводить замер сопротивления изоляции кабелей. Более того, если на борту передвижной ЭТЛ будет генератор электрического тока, то лаборатория сможет проверять сопротивление изоляции даже у кабелей, рассчитанных на очень высокое рабочее напряжение.
Особенность проведения таких работ заключается в том, что передвижная лаборатория работает за пределами зданий, следовательно, имеет дела с магистральными кабелями, которые могут тянуться от одной подстанции до другой на расстояние в несколько десятков километров. Следовательно, чтобы провести даже подготовительные работы, нужно потратить какое-то время.

Расстояние – это самая главная особенность проведения испытаний магистральных кабелей. Например, если результаты испытаний внутри здания не соответствуют нормативным показателям, кабельная трасса дробится на мелкие участки по кабельным соединениям, и каждый участок проверяется индивидуально. Таким образом, можно выявить участок кабеля, на котором изоляция не соответствует значениям установленных стандартов, и заменить его, при этом материальные и трудовые затраты будут минимальными. Если же подобный дефект изоляции выявится на магистральном кабеле, то для его устранение потребуется в разы больше затрат. Но это уже тема для следующей статьи.

Контроль сопротивления изоляции

Итак, нужно подвести итог всему вышесказанному. Прежде всего, стоит оговориться, что методика замера сопротивления изоляции не так проста и однозначна, как было описано выше. Все тонкости данной работы, безусловно, очень хорошо известны профессионалам, ежедневно подвергая изоляцию кабельных линий испытаниям. И доверять такую ответственную работу стоит только истинным гуру в этой области, которые не оставят без внимания ни одной детали.

Нужно помнить, что надёжная и стабильная работа любой энергосистемы напрямую зависит от технического состояния кабельной системы, входящей в её состав. Следовательно, чтобы работали заводы, чтобы улицы ночью освещались фонарями, чтобы в Новогоднюю ночь дети радовались огням на новогодних ёлках, чтобы в каждом доме горел свет и (что ещё важнее!!!) работал интернет, нужно содержать все составляющие этой огромной системы в надлежащем состоянии.

Настоящий документ разработан для электротехнического персонала электролабораторий, электротехнических участков промышленных объектов, проводящих работы по измерению сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

2. НОРМАТИВНЫЕ ССЫЛКИ

  • Правила технической эксплуатации электроустановок потребителей 1992 г.;
  • Правила техники безопасности при эксплуатации электроустановок потребителей 1994 г.;
  • Правила устройства электроустановок 1986 г.;
  • Нормы испытания электрооборудования и аппаратов электроустановок потребителей 1982 г.;
  • Нормы испытания электрооборудования 1978 г.;
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.

3.ОПРЕДЕЛЕНИЯ

3.1. В настоящей методике используются термины, установленные в ГОСТ 3345-76, ГОСТ 3484.3-83, ГОСТ 3484.1-88, ГОСТ 16504, ГОСТ 23875.

Распределительное устройство - распределительное устройство генераторного напряжения электростанции или вторичного напряжения понизительной подстанции района (предприятия), к которому присоединены сети района (предприятия).

Обозначения и сокращения:

  • ВН - обмотки высшего напряжения;
  • СН - обмотки среднего напряжения;
  • НН - обмотки низкого напряжения;
  • НН1, НН2 - обмотки низшего напряжения трансформаторов с расщепленной обмоткой;
  • R15 - пятнадцатисекундное значение сопротивление изоляции в МОм;
  • R60 - одноминутное значение сопротивление изоляции в МОм;
  • ПЭЭП - правила эксплуатации электроустановок потребителей;
  • ПТБЭЭП - правила техники безопасности при эксплуатации электроустановок потребителей;
  • ПУЭ - Правила устройства электроустановок.

4. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.1 Измеряемые показатели

Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.

4.2 Средства измерений

К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.

4.3 Требования к квалификации

К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.

К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.

Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

  1. При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
  2. Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
  3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
  4. Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке "Поручается". В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.
  5. Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат "Не включать. Работают люди".
  6. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
  7. Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора — не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе — не ниже III.
  8. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.
  9. Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.
  10. Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

  1. Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте - техническом описании на мегомметры.
  2. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.
  3. Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

  1. Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.
  2. Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.
  3. Проверяют срок действия госповерки на мегомметр.
  4. Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.
  5. При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони - между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней - между токопроводящей жилой и металлической оболочкой или экраном, или броней.

Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони - между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней - между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

При пониженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образцов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.

9. ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ

9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.

Средства измерений : мегомметры и омметры по ГОСТ 16862-71.

Измерение электрического сопротивления изоляции проводят:

  • в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
  • при верхнем значении относительной влажности.

Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:

Таблица 1.

  • перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
  • входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
  • контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
  • электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
  • напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.

При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.

Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.

Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.

Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.

10. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1. Если измерение для кабельных изделий проводилось при температуре, отличающейся от 20 °С, а требуемое стандартами или техническими условиями на конкретные кабельные изделия, значение электрического сопротивления изоляции нормировано при температуре 20 °С, то измеренное значение электрического сопротивления изоляции пересчитывают на температуру 20°С по формуле:

где R20 - электрическое сопротивление изоляции при температуре 20 °С, МОм;
Rt - электрическое сопротивление изоляции при температуре измерения, МОм;
К - коэффициент для приведения электрического сопротивления изоляции к температуре 20 °С, значения которого приведены в приложении к настоящему стандарту.

При отсутствии переводных коэффициентов арбитражным методом является измерение электрического сопротивления изоляции при температуре (20±1)°С.

10.2. Пересчет электрического сопротивления изоляции R на длину 1 км должен быть проведен по формуле:

R=R20L,
где R20 - электрическое сопротивление изоляции при температуре 20 °С, МОм;
L - длина испытуемого изделия без учета концевых участков, км.

Коэффициент К приведения электрического сопротивления изоляции к температуре 20 °С.

Погрешность величины сопротивления изоляции подсчитывают по рекомендациям, указанным в технических описаниях и инструкциях по эксплуатации на мегомметры с учетом внешних влияющих факторов.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты измерений вносятся в протоколы испытания кабелей до и свыше 1000 В, а также в протоколы по профилактическим наладочным работам по устройствам РЗА и электрооборудования.

Таблица 2.


Наименование измерений сопротивления изоляций
Нормируемое значение, Мом, не менее Напряжения мегомметра, В Указания
Кабели силовые выше 1000 В Не нормируется 2500 При испытании повышенным напряжением сопротивление изоляции R60 должно быть одинаковым до и после испытаний
Кабели силовые до 1000В 1 1000
Масляные выключатели:
1. Подвижных и направляющих
частей выполненных из органического материала. 3-10кВ, 300 2500
15-150кВ 1000
220кВ 3000
2. Вторичных цепей, в том числе
включающих и отключающих катушек.
1 1000
З.Выключатели нагрузки: измерение сопротивления изоляции включающей и отключающей катушек 1 500-1000 Сопротивление изоляции силовой части не измеряется, а испытывается повышенным напряжением промышленной частоты
4. Разъединители, короткозамыкатели и отделители: Производится только при положительных температурах окружающего воздуха
1 .Поводков тяг, выполненным
из органических материалов
3-10кВ 300 2500
15-150кВ 1000 2500
220кВ 3000 2500
Измерение сопротивления элемента
вентильного разрядника на напряжение:
Сопротивление разрядника или
его элемента должно
отличаться не более чем на
30% от результатов измерения
выше 3 кВ и выше 2500
менее 3 кВ 1000 на заводе-изготовителе или предыдущих измерений при эксплуатации
Сухие реакторы. Измерение сопротивления обмоток относительно
болтов крепления
0,5 1000-500 После капитального ремонта.
0,1 1000-500 В эксплуатации
Измерительные трансформаторы
напряжения выше 1000В:
Не нормируется. 2 500 При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления исправной обмотки: у встроенных ТТ - 10 МОм,
у выносных ТТ- 50 МОм
первичных обмоток,
вторичных обмоток
Не ниже 1 вместе с под- соединенными
цепями
1000
КРУ 3-10кВ: первичны е цепи
вторичны е цепи
300 2 500 Измерение выполняется при
полностью собранных цепях
1 500-1000 В
Э лектродвигатели переменного
тока вы ше 660 В
Не Должны учитываться при необходимости сушки.
нормируется 2500
обм. статора. до 660 В 1 1000
Обмотки статора у эл. двигателей
на напряжение вы ше 3000 В
или мощность более 3000 кВТ
R60/R15 2500 Производится у синхронны х
двигателей и асинхронных двигателей с фазным ротором напряжением 3000 В и выше или
мощностью выше 1000 кВт
Не нормиру- 1000В
Обмотки ротора ется
Стационарные, передвижные, переносные комплектные испытательные установки. Не нормируется 2500
Измерение изоляции цепей и
аппаратуры напр. выше 1000В.
Цепей и аппаратуры на напряжение
до 1000 В
1 1000
Машины постоянного тока: Сопротивление изоляции обмоток
измерение изоляции обмоток и бандажей до 500В, 0,5 500 измеряется относительно корпуса, а бандажей - относительно корпуса и
выше 500В 1 000 удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями
Силовые и осветительные электропроводки 0,5 1000
Распределительные устройства,
щиты и токопроводы
0,5 1000
Вторичны е цепи управления,
защиты и автоматики
Шинки постоянного тока
1 500-1000
10 500-1000
Каждое присоединение вторичных
цепей и цепей питания приводов
выключателей
1 500-1000
Цепи управления, защиты, автоматики, телемеханики, возбуждения
машин пост. тока на напряжение
500-1000В, присоединенным к цепям главных РУ
1 500-1000 Сопротивление изоляции цепей
напряжением до 60 В, нормаль
но питающихся от отдельных
источников, измеряется мегом-
метром на 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с
микроэлектронными элементами:
выше 60 В 0,5 500
60 и ниже 0,5 100