Измерение освещенности люксметром от искусственных источников в светлое время суток. Можно ли измерить освещенность с помощью телефона? Как мерить искусственный свет в общественных помещениях

Плохая освещенность помещений, рабочего места или комнаты в квартире отрицательно влияет на здоровье человека, снижает концентрацию внимания, работоспособность, появляется раздражительность и сбои в психике. Очень яркий свет также является раздражителем, и не дает ничего положительного для человека.

Поэтому необходимо обеспечить нормальную освещенность помещений, которая регламентируется определенным стандартом СНиП. Для этого требуется простая установка соответствующих ламп освещения для каждого помещения.

Освещенность помещений в номинальном выражении является потоком света, который излучается на поверхность под прямым углом в расчете на единицу площади. При падении света под острым углом освещенность снижается в зависимости от угла наклона.

Освещенность измеряется в люксах, который равен 1 люмену (единица светового потока) на м 2 .

Освещенность помещений прямо зависит от силы света, который исходит от источника. Чем больше расстояние от светового источника до поверхности, тем меньше параметр освещенности.

Нормы

Каждый тип помещения имеет свои нормативы освещенности. Например, для помещения магазина по продаже продуктов наибольшее значение пульсации установлено 15%, освещенность 300 люксов, однако для отдела спортивных товаров или строительных материалов нормы совсем другие. Также правила устанавливают определенную допустимую освещенность для поликлиник, детских садов, автосервисов и других объектов.

Пример расчета освещенности

Определим необходимую освещенность для спальной комнаты. Площадь спальни составляет 25 м 2 . Значение нормы по правилам для комнат такого типа умножаем на площадь: 150 х 22 = 3300 люкс. Общий световой поток приборов освещения при такой величине освещенности должен быть равен не менее 3300 люмен.

Теперь остается подобрать подходящие лампы освещения для спальни. При выборе , можно, например, приобрести три таких лампы по 12 ватт. Это обеспечит создание светового потока 3600 люмен, что видно по значениям таблицы.

Такой расчет является приблизительным, так как светодиодные лампы имеют различные параметры света в зависимости от производителя. Таким образом, можно легко самостоятельно рассчитать требуемую мощность и тип ламп для создания нормированной освещенности любого помещения согласно правилам СНиП.

Приборы для измерения освещенности

Для замера освещенности помещений применяют различные приборы, которые имеют свои особенности конструкции и методы измерений. Основные приборы рассмотрим более подробно.

Люксметры делятся на электронные и аналоговые, которые уже не производятся, и остались только старые образцы таких моделей.

Такой люксметр используется:
  • Проверка соответствия освещенности помещений нормативным данным.
  • Измерение параметров освещения при проведении работ по оценке условий труда.
  • При электромонтажных работах для сравнения показателей освещенности с расчетами для приборов освещения.

Принцип действия люксметра заключается на работе встроенного , на который направляется поток света. При этом в фотоэлементе возникает значительный поток заряженных частиц. В результате появляется течение электрического тока, сила которого зависит от силы светового потока, направленного на фотоэлемент. Обычно этот параметр и выводится на шкалу прибора.

Виды люксметров
В зависимости от расположения датчика, измеряющего освещенность помещений, люксметры делятся на виды:
  • Моноблок (цельное устройство) . Датчик фиксируется в самом корпусе прибора.

  • Прибор с выносным датчиком , подключаемым гибким проводом.

Чтобы произвести простые измерения подойдет обычный люксметр-моноблок, без вспомогательных различных функций. Для определения нескольких параметров освещенности при производстве профессионального расчета, необходимо использовать устройства, имеющие дополнительный набор функций. Такие приборы имеют встроенную память и могут определять средние значения параметров.

Значительным преимуществом для люксметра является наличие особых светофильтров, которые помогают точнее определить значение силы света, которая исходит от приборов освещения с разными оттенками цветов.

Наличие выносного датчика в люксметре дает возможность определить освещенность с большей точностью, так как при этом влияние внешних факторов снижается. На современных моделях имеется жидкокристаллический дисплей. С помощью него намного проще снимать показания прибора.

Приборы для фототехники

В фототехнике используются такие приборы, как экспонометры (экспозиметры) . Они предназначены для определения параметров яркости и освещенности экспозиции. Определив значения этих показателей, профессиональный фотограф может получить качественные фотоснимки.

Экспонометры разделяют на виды:
  • Внутренние.
  • Внешние.
Флешметры

Такие приборы предназначены для измерения освещенности при фотографировании. При этом дополнительным элементом используют устройства освещения импульсного типа (фотовспышки). В современных моделях фотоаппаратов флешметр расположен в корпусе. Он изменяет мощность фотовспышки при разных уровнях света.

Профессионалы применяют флешметры с выносным датчиком, они точнее определяют освещенность.

Фотометр

Такой прибор называют мультиметром. Он является более современным вариантом флешметра. Его достоинством является сочетание опций экспонометра и флешметра.

Пульсация освещенности

Равномерность светового потока приборов освещения оставляет желать лучшего. Эффект, выражающийся в наличии колебаний в световом потоке, не виден глазу, однако его воздействие на здоровье человека имеет большое значение.

Опасность такого света заключается в том, что визуально невозможно определить наличие импульсов света. А в результате их действия может нарушиться сон, возникает дискомфорт, депрессия, слабость, сердечные сбои и другие симптомы.

Параметром пульсации является ее коэффициент, который выражает силу изменения потока света, направленного на единицу площади поверхности за промежуток времени. Формула расчета этого коэффициента довольно простая. Коэффициент пульсации освещенности определяется разностью между наибольшей и наименьшей освещенностью за определенное время, разделенной на двойную среднюю освещенность, и результат умножается на 100%.

Санитарные правила определяют верхний предел коэффициента пульсации. На рабочем месте он должен быть не более 20%, и зависит от степени ответственности работы сотрудника. Чем ответственнее работа, тем меньше должен быть коэффициент пульсации освещения.

Для помещений администраций и офисов с напряженной зрительной работой такой коэффициент не должен подниматься выше 5% отметки. При этом учитывается поток света частотой пульсаций до 300 герц, так как более высокую частоту нет смысла учитывать, из-за того, что она не воспринимается глазом человека и не оказывает отрицательного влияния.

Определение пульсации освещения

Для определения пульсации света применяют эффективный простой прибор, который измеряет яркость, пульсацию и освещенность помещений, и называется люксметр-пульсометр-яркомер.

Функции прибора
  • Измерение пульсации световых волн, возникающих при мерцании различных приборов освещения.
  • Измерение пульсации освещения мониторов компьютеров и других экранов.
  • Определение освещенности помещения.
  • Определение яркости приборов освещения и мониторов.

Принцип работы устройства заключается в проверке уровня освещения с помощью фотодатчика с дальнейшим преобразованием сигнала и вывода результата на жидкокристаллический дисплей.

Коэффициент пульсации света можно определить с помощью программы на компьютере, либо самостоятельно проанализировать измерения. Для анализа измерений на компьютере применяют специальную программу «Эколайт-АП», которая работает с прибором «Эколайт-02».

Отличительными признаками измерительных приборов, определяющих пульсации, являются уровни чувствительности, тип питания и качество фотодатчиков.

Наибольший коэффициент пульсации выдают светодиодные лампы, при использовании которых этот параметр иногда достигает 100%. и обладают незначительным коэффициентом пульсации. Лампы накаливания имеют коэффициент пульсации не выше 25%. При этом стоимость и качество ламп не играют роли. Даже дорогие лампы могут выдавать значительные показатели пульсации света.

Методы снижения пульсации освещения
  • Применение приборов освещения, функционирующих на переменном токе с частотой более 400 герц.
  • Монтаж осветительной арматуры на разные фазы при трехфазной сети.
  • Установка в прибор освещения устройства компенсации ПРА () и особое подключение ламп со сдвигом. Первая лампа работает на отстающем токе, а 2-я на опережающем.
  • Монтаж светильников с ЭПРА. Они оснащены электронным пускорегулирующим аппаратом, который сглаживает пульсации и стабилизирует напряжение.

Если в помещении приборы освещения подключены к одной фазе, то подключить их к разным фазам будет проблематично. Поэтому удобнее будет приобрести светильники с ЭПРА. Их достоинством является соответствие всем нормам правил.

Контроль уровня пульсации освещения необходим для здоровья человека, так как отклонение от норм приводит к нарушению работоспособности и самочувствия сотрудников.

Для жилых зданий освещенность помещений также важна. Пульсация света не видна, но со временем проявляется ее негативное влияние.

Данная статья является переводом статьи Luxmeter App versus measuring device:
Are smartphones suitable for measuring illuminance?

Для смартфонов существует множество приложений, облегчающих нашу жизнь. Есть множество приложений для светотехников. Но значит ли это что можно использовать смартфон для измерения освещенности?

Мы задаемся этим вопросом все чаще и чаще, потому что выгода очевидна. Ведь такие приложения бесплатны или стоят не очень дорого. Было бы замечательно заменить люксметр, который, в зависимости от производителя и точности, стоит от 100 до 2000 евро (алиэкспресс не согласен и показывает суммы даже меньше 10 евро) , на приложение для смартфона, который и так есть почти у каждого.

Как аккредитованная светотехническая лаборатория мы можем только улыбаться идеи измерения освещенности с помощью смартфона. Тем не менее, нам показалась эта идея весьма любопытной, что и побудило нас провести эксперимент. Таким образом, мы начали искать различные приложения для различных операционных систем. Нам хотелось выяснить, насколько точно они измеряют по сравнению с люксметром из нашей лаборатории.

Аппаратное обеспечение

Для этого теста мы использовали различные модели iPhone, а также: Sony, Samsung и Nokia.

производитель

Операционная система

iPhone 5

iPhone 5с

iPhone 6

Sony Xperia Z 1

Android

Sony Xperia Z 2

Android

Samsung Galaxy S 5

Android

Nokia Lumia 925

Windows Phone


Программное обеспечение
Мы установили следующие приложения, большинство из которых бесплатны:

Программа

Разработчик

Операционная система

Возможность калибровки

Цена

Galactica Luxmeter

Flint Soft Ltd.

нет

бесплатно

LightMeter by whitegoods

Whitegoods

да

бесплатно

LuxMeterPro Advanced

AM PowerSoftware

да

7,99 €

Luxmeter

KHTSXR

Android

да

бесплатно

Light Meter Pro

Mannoun.Net

Android

да

бесплатно

Lux Light Meter

Geogreenapps

Android

да

бесплатно

Sensor List

Ryder Donahue

Windows Phone

да

бесплатно


Эталонный прибор


Мы провели контрольные измерения с помощью люксметра PRC Krochmann (Model 106e, special model, class A) И, конечно же, прибор был откалиброван.

Используемые источники света


Для этого теста мы выбрали три различных источника света:

· низковольтная галогеновая лампа

· компактная люминесцентная лампа (цветовая температура: 2700 K)

· LED (цветовая температура: 3000 K)

Что бы не усложнять статью мы оставили только LED источник.

Наша тестовая установка


Тест проходил в темном помещении без источников искусственного и естественно света. Для применяемых источников света мы устанавливали освещенность поочередно на 100 лк, 500 лк и 1000 лк (наверно всё же 2000) на горизонтальной поверхности. Для этого фотометрическая головка люксметра была расположена перпендикулярно оси светильника.

Затем, так же помешались смартфоны с различными приложениями так что бы фронтальная камера и датчик яркости находились под светильником. Датчик или фронтальная камера была расположены точно в той точки где ранее была расположена фотометрическая головка люксметра.

Так были расположены все устройства, за исключением iPhone с платным приложением «Luxmeter Pro Advanced» так как это приложение для измерения освещённости предполагает замер света, отраженного от поверхности. В этом приложении достаточно много настроек включая типы источников света, расстояние до источника света и т.д.

Так же при использовании некоторых приложений возможна калибровка. Калибровка была проведена в соответствии с инструкциями, а именно 100ЛК.

Оценка


Во время нашего теста мы выяснили, что, хотя калибровка в некоторых приложений и была возможна до определенного значения, не удалось установить значение достаточно точно. Это произошло из-за того что шаг с которым устанавливалось значение был большим, либо значение в 100лк вообще не устанавливалось, так например в приложении LightMeter by whitegoods для iPhone 5 значение для калибровки удалось установить максимум на 34лк.

Отклонения от эталонных значений порой были весьма высоки (доходило до 113% у Samsung Galaxy S5 с приложением «Lux Light Meter» от Geogreenapps). При установки эталонного значения в 500 лк на дисплее смартфона отображалось значение в 1,063 лк. Самое низкое отклонение в процентах (3%) было зафиксировано при использовании iPhone 5 и приложения « LightMeter by whitegoods» . При установки эталонного значения в 500 лк, этот смартфон показал 484 лк. Однако мы не можем сделать из этого вывод что именно данный смартфон с конкретной программой всегда будет показывать верное значение. При установки освещенности на 100лк и при использовали это же приложения на том же смартфоне отклонение достигало 89% и устройство показывало 11 лк.

Нам удалось выявить тенденцию, что отображаемые значения на устройствах от Sony, Samsung и Nokia были значительно выше эталонных значений, в то время, как правило, на iP hone отображаемые значения значительно ниже эталонных значений. Среднее отклонение от эталонного значения, измеренного во всех приложений на Android-смартфонах и на телефонах с Windows Phone , были в среднем на 60% выше эталонных значений.

Среднее отклонение всех значений, измеренных различными iPhone было на 60% ниже эталонных значений. Мы также заметили, что различные приложения, установленные на смартфонах от Samsung и Sony, показывали близкие значения. По всей видимости, что в этих моделях для измерения используется датчик яркости, а не камера.

В некоторых моделях Samsung можно переключиться в режим инженерного меню - с помощью набора с клавиатуры комбинации *#0*#. Выбрав пункт меню «Датчик света», вы можете узнать предполагаемую освещенностью без установки приложения. Так что установка приложений в данном случае будет лишним. Тем не менее, все отображаемые этими устройствами значения также отклонилась от 37% до 113% от эталонного значения. Galactica Luxmeter» и « LightMeter by whitegoods ». К сожалению, и здесь нас ждало разочарование. Диаграмма показывает, что четыре смартфона которые мы тестировали, показали в некоторых случаях совершенно разные результаты измерений.

Мы подозреваем, что причиной этих колебаний является использование отличных друг от друга компонентов, что пользователь не замечает при повседневном использовании, но что становится заметным при непосредственном сравнении.

Сохраняется ли динамика процентного отклонений от эталонного значения?

Если вы всегда используете смартфон с одним и тем же приложением, вы можете предположить, что можно достаточно точно производить замеры, если вы уже знаете, процентное отклонение от эталонного значения.

Но всегда ли одинаковый процент на которое отклоняется значение? Для того, чтобы ответить на этот вопрос, мы провели измерения освещённости на 10 лк, 100 лк, 1000 лк и 10000 лк с помощью iPhone 5 расположенным на оптической скамье в нашей черной комнате. Приращение яркости можно очень точно задавать путем регулировки расстояния между источником света и приемником. В качестве источника излучения снова использовался светодиодный источник света с цветовой температурой 3000 K.

В этом тесте мы рассмотрели показания двух различных приложений. Как показывает опыт, значения приложений отклоняются друг от друга - в некоторых случаях до 358% (значения составляют от 12 лк до 55 лк при эталоном значении 100 лк), если мы посмотрим на процентное значение отклонений от эталонных значений, то никакой закономерности мы не увидим.

При использовании приложения « Galactica Luxmeter» значения были выше 180% эталонных при 10 лк и на 50% ниже эталонных значений при 10 000 лк.

При использовании приложения « LightMeter by whitegoods » откалиброванным на 10 лк. При эталонном значении 100 отклонение составила 88% в меньшую сторону, а при 10 000 лк 59%. Значения всех остальных приложенный были так же значительно ниже. При всех остальных значениях показания были так же ниже.

Совершенно случайно мы обнаружили, что измерения проведенные с помощью передний и задней камеры показывают различные значения. В дополнение к этому, некоторые приложения никогда не показывают 0 лк, даже если на камеру не попадает никакой свет, и она закрыта «заглушкой».

Заключение

Результаты доказывают, что серьезные измерения освещенности возможны только с помощью профессионального оборудования. Оно оснащено откалиброванным датчиком, который гарантирует, что оценка освещенности будет проведена в соответствии с чувствительность человеческого глаза.

Кроме того, приборы позволяют провести оценку освещенности в зависимости от угла падения луча. Смартфоны не могут сделать ни того, ни другого, так как в противном случае они не смогут выполнять свои функции.

Несмотря на то что разработчики утверждают, что они могут заменить профессиональные приборы, поскольку в их приложениях есть различные умные функции типа калибровки, но колибровка не позволяет установить точные значения. А если это и возможно, то все равно возникают отклонения при измерениях. Даже при использовании одного и того же приложения и идентичных смартфонов получаются разные результаты измерений.

Поэтому, к сожалению, приложения на самом деле бесполезны – даже просто для того что бы получить общее представление о освещенности.

from Thomas Pittner and Jaqueline Goldschmidtabout

Сегодня мы рассмотрим тему пульсации освещения и нормированный параметр освещенности.

Как измерить коэффициент пульсации?

Эксперименты подтвердили, что свет неизбежно влияет на наше самочувствие. Слабая освещенность на рабочем месте — частая причина проблем со здоровьем, снижения концентрации, сбоев в психике, падению работоспособности.

Чрезмерно яркий свет, наоборот, является раздражающим фактором и может стать причиной стресса.

Лучшее решение — обеспечить правильное освещение, которое гарантирует оптимальную работоспособность.

Нормальные уровни освещенности четко регламентированы для каждого из видов помещений. Для этих параметров есть свои нормы и правила, о которых необходимо знать.

При этом функцию контроля берет на себя санитарно-эпидемиологическая служба.

Освещенность помещений: в чем измеряется?

Номинальная освещенность помещения в численном выражении – это световой поток, который опускается на плоскость под углом 90 градусов из расчета на одну единицу площади.

Если же падение света происходит под острым углом, то параметр освещенности изменится.

Полученный показатель будет уменьшаться прямо пропорционально упомянутому выше углу.

Единица измерения уровня освещенности — люксы. При этом один люкс равен одной единице светового потока (люмена) на квадратный метр.

Если рассматривать физическую единичную систему, то единица измерения освещенности — фоты. При этом 1 фот = 10 000 люксов.

Параметр освещенности будет меняться пропорционально силе света, исходящей от самого источника. Чем дальше находится освещаемый предмет, тем ниже его освещенность.

К примеру, в США и Англии единица освещенности другая. Там принято использовать «фут-канделу». Этот параметр отображает, что сила света, которая равна одной канделе, освещает предмет на расстоянии один фут от источника света.

В теории применяется еще несколько видов единиц измерений, но, как правило, они устарели, не признаются международной системой или представляют собой обычные производные от основного параметра (люкса).

Измерение освещенности помещения: основные методы и приборы

Чтобы определить уровень освещенности, можно использовать один из перечисленных ниже приборов — флэшметр, экспозиметр и экспонометр, люксметр или фотометр.

Главный прибор из данной группы, способный выдать параметр реальной освещенности (естественной или искусственной) — люксметр.

Они бывают аналоговые и электронные. Аналоговые приборы уже не выпускаются, остались только раритеты.

Его можно применять для решения следующих задач:

  • измерения уровня освещения при аттестации (проверке) рабочих мест;
  • снятия показателей освещенности и их сравнение с расчетными параметрами при выполнении работ по монтажу элементов освещения;
  • контроль соответствия уровня освещенности в тех или иных помещениях действующим нормам;
  • анализ параметров освещенности на соответствие расчетным параметрам в период проведения работ по монтажу осветительных элементов.

Сам люксметра работает на простом принципе. Внутри устройства встроен фотоэлемент. Когда на него направляется световой поток, внутри полупроводникового элемента освобождается мощный поток электронов.

Результатом является появление электрического тока. Величина последнего пропорциональна силе света, который освещает фотоэлемент устройства.

Как правило, именно этот параметр и отражен на приборной шкале.

В зависимости от типа фиксации контролирующего элемента (датчика) люксметр бывает двух видов:

  • жесткая фиксация датчика (выполняется в форме цельного устройства, моноблока);
  • с датчиком выносного типа, который подключается при помощи гибкого кабеля.

Для проведения простых измерений достаточно самого простого устройства — люксметра в форме моноблока, без дополнительных опций.

Если же требуется уточнение большего числа параметров при проведении профессиональных исследований, то лучше применять более сложные устройства — с опцией вычисления среднего параметра и встроенной памятью.

Большой плюс — применение в люксметре специальных светофильтров. С их помощью можно более точно вычислить параметр силы света, исходящий от осветительных приборов с различными оттенками цвета.

Кроме этого, устройства с выносным датчиком показывают большую точность измерений, ведь на них меньше действуют внешние факторы.

В свою очередь, наличие ЖК-дисплея на современных моделях существенно упрощает процесс снятия показаний с устройства.

Такие приборы, как эскпозиметры и экспонометры применяются в фототехнике.

Их задача — фиксация параметров освещенности экспозиции и яркости. Зная величину этих показателей, фотограф может добиться идеального качества фото.

В свою очередь, экспонометры выпускаются двух видов. Они бывают внешними и внутренними.

Задача флэшметра — измерение уровня освещенности в процессе фотографирования. В качестве вспомогательных элементов применяются осветительные устройства импульсного типа.

В новых фотоаппаратах флэшметр уже встроен. Его задача — регулирование мощности фотовспышки в зависимости от уровня освещения.

В профессиональных студиях, как правило, используются флэшметры выносного типа. Их особенность — наличие точной системы индикации, способной фиксировать не только падающие, но и отраженные лучи света.

Мультиметр (фотометр) — прогрессивный и более современный тип флэшметра. Его плюс — способность сочетания функций упомянутого нами прибора и экспонометра.

Коэффициент пульсации освещенности: сущность и нормы

Не секрет, что все осветительные приборы излучают неравномерный световой поток, имеющий различное число колебаний. Этот эффект скрыт от глаз, но его действие на здоровье человека весьма существенно.

При этом опасность света как раз и заключается в том, что его нельзя распознать, но результатом действия может стать расстройство сна, слабость, депрессия, сбои в работе сердца, дискомфорт и так далее.

Коэффициент пульсации освещения — параметр, который отражает силу изменения светового потока, направляемого на единицу поверхности в определенный временной промежуток.

Расчет коэффициента производится по простой формуле — максимальный параметр освещенности в определенный промежуток времени «минус» минимальный показатель за тот же промежуток времени.

Полученное число необходимо поделить на средний параметр освещенности и умножить на 100%.

Стоит учесть, что существующими санитарными правилами установлен верхний лимит на параметр коэффициента пульсации.

В месте организации рабочего места он не должен быть выше 20%. При этом чем ответственней вид деятельности у работника, тем ниже должен быть этот параметр.

Так, для офисных помещений и административных зданий, где подразумевается напряженный зрительный труд, коэффициент пульсации не должен быть больше 5%.

При этом в учет берется световой поток с пульсаций до 300 Гц, ведь более высокий параметр частоты просто не воспринимается организмом человека и не может оказывать на него какое-либо влияние.

Коэффициент пульсации: особенности измерения

Чтобы определить частоту пульсации освещения, можно воспользоваться простым и эффективным прибором — измерителем освещенности, пульсации и яркости.

Его функциональность позволяет определить:

  • уровень яркости мониторов и приборов искусственного освещения;
  • уровень освещенности комнаты;
  • пульсации освещенности всех видов мониторов;
  • пульсации волн света, появляющихся при мерцании разных светильников.

Принцип действия основной группы устройств (пульсметра, яркометра и люксметра) — контроль уровня света посредством фотодатчика, после чего происходит преобразование сигнала и результат можно увидеть на ЖК-дисплее.

Люксметр-Пульсметр-Яркомер Эколайт-02 .

Чтобы определить коэффициент пульсации, можно пойти двумя путями — провести самостоятельный анализ или воспользоваться компьютерной программой.

Самые популярные устройства для вычисления пульсаций — «Эколайт — 01 (02)» и «Люпин». Если необходимо анализировать данные на компьютере, то можно использовать специальный софт — «Эколайт-АП».

Главное отличие устройств для измерения пульсаций — качество фотоэлементов, вид источников питания (аккумуляторов) и уровень чувствительности.

Максимальный коэффициент пульсации имеют светодиодные лампы (иногда этот параметр может достигать 100%). Лампы накаливания и люминесцентные лампы имеют меньший коэффициент пульсации.

К примеру, у первых коэффициент пульсации не больше 25%. При этом качество и цена источника света не важны, ведь даже дорогостоящие лампы могут иметь высокий коэффициент пульсации.

Нормы освещенности

Сегодня для каждого типа помещения устанавливается своя норма освещенности, а также предельно допустимые коэффициенты пульсации.

К примеру, для торгового зала в продуктовом магазине, максимальный параметр коэффициента пульсации — 15%, а уровень освещенности — 300 лк, для отдела стройматериалов, спорттоваров и сантехники- 10% и 200 лк, для отдела посуды, магазина игрушек и одежды — 20% и 200 лк, для примерочных — 20% и 300 лк и так далее.

Соответственно, свои нормы освещенности есть для детских садиков, жилых помещений, медицинских учреждений, автомоек и так далее.






Как снизить пульсацию освещения?

В последние годы все большее значение отдается контролю пульсации, исходящей от источников освещений.

При завышении этих параметров принимаются все меры для их нормализации (снижения).

Реализуется это одним из следующих методов:

  1. Использованием осветительных устройств, работающих от переменного тока (частота должна быть больше 400 Гц).
  2. Монтажом в светильник компенсирующего устройства ПРА, а также подключением ламп со сдвигами. Для первой лампы характерен отстающий ток, а для второй — опережающий.
  3. Установка простых светильников на разные фазы (потребуется трехфазная сеть).
  4. Применение светильников с ЭПРА.

Выбор одного из вариантов, с помощью которого можно добиться оптимального параметра коэффициента пульсаций, зависит от условий реализации для каждого из конкретных случаев.

Есть помещения, где светильники подключены лишь к одной из фаз, что делает монтаж к различным фазам весьма сложной задачей.

Удобнее всего — купить специальные светильники с ЭПРА. Их преимущество — соответствие всем санитарным нормам. При этом можно отдельно смонтировать ЭПРА в уже готовые устройства.

Коэффициент пульсации и нормы освещенности: основные документы

Главный документ, в котором прописаны все требования в отношении коэффициентов пульсаций и норм освещенности — Свод правил СП (выпущен под номером 52.13330.2011 ).

Он был выпущен в 2011 году и представляет собой СНИП 23-05-95 , где прописаны ключевые требования законов страны в отношении международных нормативов, энергетической эффективности и техники безопасности.

В Своде правиле есть наиболее важные требования к коэффициенту пульсации и освещенности в различных типах помещений — жилых, промышленного типа и общественных.

Контроль освещенности и уровень пульсаций искусственного освещения необходим не только для формального прохождения аттестации рабочего места или же плановой проверки со стороны санэпидстанции.

Это важно для здоровья человека, ведь отклонение от действующих показателей может привести к нарушениям самочувствия всех сотрудников, которые находятся в помещении.

Как следствие, снизится работоспособность, уменьшится рентабельность компании и упадет прибыль.

5 / 5 ( 1 голос )

Измерение искусственной освещённости и коэффициента пульсаций в присутствии естественного освещения

Измерение искусственной освещённости и коэффициента пульсаций в присутствии естественного освещения.

Измерение искуственной освещенности в дневное время.

В МУК 4.3.2812-10 устанавливаются требования, что допускается производить измерения искусственной освещённости и коэффициента пульсаций только, если естественный фон освещённости в обследуемой точке не превышает 10% от измеряемой искусственной освещённости. То есть это означает, что для большинства помещений с внешними окнами такие измерения должны проводиться в тёмное время суток. Такие требования введены для того, чтобы устранить влияние на результаты измерений естественного дневного освещения.

Наличие в обследуемых помещениях окон даже относительно небольших размеров приводит к существенному искажению результатов измерений искусственной освещённости и коэффициента пульсаций, особенно в солнечные дни.

Возможность проведения измерений искусственной освещённости и пульсаций в тёмное время суток зачастую осложняется ещё и тем фактом, что на многие объекты доступ в нерабочее или ночное время закрыт. При этом отсутствует возможность организовать персонал этих объектов для предоставления доступа на них в ночное время.

Ещё одним препятствием для проведения измерений искусственной освещённости и её коэффициента пульсаций в тёмное время суток, является полярный день, устанавливающийся летом во многих северных регионах России. Круглосуточное присутствие солнечного света делает невозможным проведение таких измерений в течение нескольких месяцев.

Измерения освещённости с вычитанием естественного фона.

Решением проблемы наличия естественного фона при проведении измерений искусственной освещённости могли бы служить измерения при закрытых светонепроницаемыми материалами окнах (шторы, жалюзи, ставни и т.п.). Однако далеко не всегда существует возможность закрыть оконные проёмы, особенно в производственных, общественных и офисных зданиях с большой площадью остекления.

В таких случаях единственным способом провести измерения искусственной освещённости остаётся метод вычитания естественного фона из значения общей (суммарной) освещённости. В основе этого метода лежит тот факт, что в каждой точке пространства результирующая освещённость представляет собой сумму всех освещённостей, создаваемых в данной точке каждым отдельным источником света:

где Е1, Е2, Е3,.....,ЕN - освещённость, создаваемая в данной точке источниками света номер 1, 2, 3, ...., N.

То есть, при наличии естественного и искусственного освещения, общая освещённость будет представлять собой их сумму:

где Еест – фон естественной освещённости, Еиск – значение искусственной освещённости.

На примере, приведённом на Рис.1, мы видим,

что фон естественной освещённости 100 лк (Еест, желтая линия) добавился к уровню искусственной освещённости 200 лк (Еиск, синяя линия) и суммарный уровень освещённости составил 300 лк (Е, зелёная линия).

Таким образом, если при выключенном искусственном освещении в обследуемой точке измерить освещённость, обусловленную наличием естественного освещения, и вычесть её из значения суммарной освещённости в этой же точке, то мы получим значение искусственной освещённости:

Границы основной относительной погрешности результата измерений, выполненных таким способом, при условии незначительности вклада случайной составляющей, можно оценить как θ = 1,1√2 θпр, где θпр – относительная погрешность средства измерения, (θ = 12,5%, при θпр = 8%), при доверительной вероятности P = 0,95.

Измерения искусственной освещенности с вычитанием естественного фона можно выполнить, например, обычным люксметром-пульсметром-яркомером "Эколайт-02" . Однако необходимо учитывать, что проведение таких двухэтапных измерений возможно только при условии, что, в течение того времени пока будут выполняться оба этапа измерения, уровень естественной освещенности будет оставаться постоянным. Т.е. такие измерения следует проводить в условиях максимально стабильной световой обстановки, а именно:

  • плотная облачность;
  • отсутствие движения людей и объектов в районе точки измерения;
  • минимальное время между этапами измерения
  • и т.п.

Измерение коэффициента пульсаций искусственного освещения в условиях присутствия фона естественного освещения.

Мы описали способ измерения искусственной освещенности при наличии естественного фона. Даже показали, как это можно сделать при помощи обычного люксметра и ручного пересчёта результатов измерений. Однако такой метод нельзя напрямую применить к измерению коэффициента пульсаций искусственного освещения. Проиллюстрируем это на примере.

Если посмотреть на Рис.2, то можно увидеть, что в нашем примере максимальное значение пульсаций искусственного освещения (синяя кривая) Емакс = 200 лк, при этом минимальное значение Емин = 100 лк. Тогда, по формуле вычисления коэффициента пульсаций из статьи "Пульсации освещённости и яркости" мы получим, что:

т.е. Кп = (200-100) / (200+100) = 100/300 = 33.3%.

Однако, если мы измерим обычным люксметром-пульсметром (например, тем же "Эколайт-02", который нам здорово помог в предыдущем примере с вычитанием фона) коэффициент пульсаций суммарной (искусственной и естественной) освещенности, то, при наличии фона естественной освещенности Еест = 100 лк (жёлтая прямая), получим уже значения для суммарной освещенности (Рис.2, зелёная кривая) Емакс = 300 лк, Емин = 200 лк. Подставляя эти значения в формулу (4), получим:

Кп = (300-200) / (300+200) = 100/500 = 20% (!).

Занижение коэффициента пульсаций освещенности происходит из-за добавки постоянного уровня от естественного освещения. Поскольку, обычный люксметр не может учитывать при расчётах коэффициента пульсаций присутствие естественного фона, то таким прибором измерить пульсации искусственного освещения, при наличии естественного фона, НЕВОЗМОЖНО!!!

Тем не менее, есть способ получить правильное значение коэффициента пульсаций искусственного освещения при наличии естественного фона. Для этого надо перед расчётом Кп вычесть из максимального (Емакс) и минимального (Емин) значений суммарной освещённости значение фона в данной точке. Осуществив указанное вычитание фона, мы получим следующее выражение для коэффициента пульсаций:

Упрощаем и получаем следующую формулу:

Действуя по такому алгоритму мы получим истинное значение коэффициента пульсаций искусственного освещения. Попробуем посчитать по нему Кп из нашего примера на Рис.2., где у нас уровень естественной освещённости Еест = 100 лк (жёлтая прямая), максимальное значение освещённости Емакс = 300 лк и минимальное значение освещённости Емин = 200 лк. Вычисляем по формуле (5) коэффициент пульсаций искусственного освещения с учётом естественного фона:

Кп = (300-200) / (300+200-2×100) = 100 / (500-200)= 100/300 = 33.3%

Мы видим, что, проведя вычисления по предложенному алгоритму, мы получили то же значение коэффициента пульсаций искусственного освещения, что и при его расчёте в условиях отсутствия естественного фона. То есть, если в люксметре-пульсметре реализован такой алгоритм расчёта коэффициента пульсаций с учётом наличия естественного фона, то, в результате, мы будем получать правильное значение. Конечно же, при соблюдении тех же требований к условиям проведения таких измерений, что были сформулированы выше для проведения измерений искусственной освещённости с учётом наличия естественного фона.

Погрешность измерений коэффициента пульсаций искусственной освещенности при наличии естественного фона можно оценить величиной основной относительной погрешности средства измерения, которая для данного параметра составляет 10%.

Как измерить коэффициент пульсаций искусственного освещения при наличии естественного фона при помощи люксметра-пульсметра "Эколайт-01".

Предложенный алгоритм измерения пульсаций искусственного освещения при наличии естественного фона реализован в люксметре-пульсметре-яркомере "Эколайт-01" . В этом приборе существует специальный режим измерений с учётом наличия естественной освещённости. Приведём фрагмент с описанием этого режима из Руководства по Эксплуатации, к "Эколайт-01".

2.3.4.5. Измерение освещённости и пульсаций с учётом уровня фоновой освещённости осуществляется в режиме остановки текущего измерения выбором пункта меню "Учёт фона".

Перед запуском режима измерений с учётом фона необходимо оставить только источник фоновой освещённости (например, погасить все искусственные источники света). После запуска режима измерений с учётом фона, прибор на первом этапе, в течение 10 секунд, переходит в режим измерения и усреднения фонового значения освещённости (Рис.10).

После запуска режима измерения с учётом фона, в верхней информационной строке появляется мигающий значокинформирующий пользователя, о включении этого режима.

ВНИМАНИЕ!!! При измерении усреднённого фонового значения освещённости категорически запрещается совершать действия,которые могут привести к искажению результата его измерения. Например, менять положение фотоголовки, изменять световую обстановку в точке измерения (включение/выключение источников света, открытие/закрытие оконных и дверных проёмов, перемещение предметов и лиц в окрестности фотоголовки и т.п.).

После окончания измерения фоновых значений освещённости, прибор переходит в режим отображения уровня общей освещённости за вычетом только что полученного значения фоновой освещённости. Т.к. на данном этапе выключенные источники света ещё не включены, то показания освещённости равны нулю (или близки к нему). (Рис.11)

После включения источников света, на экране БОИ-01 будет отображено значение освещённости, полученной в результате вычитания из общего уровня освещённости уровня фоновой освещённости. Во второй строке представлено значение пульсаций включённых источников света, которое рассчитывается ПОСЛЕ(!) вычитания фоновых значений, что позволяет избежать искажения коэффициента пульсаций при использовании метода вычитания фона "вручную". (Рис.12).

ВНИМАНИЕ!!! Функция "Учёт фона" обеспечивает достоверность проведённых измерений ТОЛЬКО при соблюдении следующих условий:

  • измерения фона и последующей общей освещённости производятся в одной точке пространства;
  • при измерениях исключены перемещения и смена ориентации фотоголовки;
  • при измерении исключены колебания значений фона;
  • измерение фона и последующее измерение общей освещённости должны быть проведены в максимально возможное короткое время, чтобы минимизировать неизбежные изменения фона во времени.


Один из самых распространенных в измерении факторов, вызывает самое большое количество вопросов в подготовке, измерении и оценке полученных результатов. Наряду с микроклиматом, освещенность измеряется при всех видах работ по охране труда, санитарно-эпидемиологическом надзоре, производственным контроле, при приемке объектов в эксплуатацию и прочих работах.

Казалось бы, обычная рутинная операция ставит всегда перед измерителем много вопросов:

- где измерять освещенность – в помещении или на рабочем месте?

- как располагать точки измерения освещенности в помещении?

- а как располагать точки измерения освещенности на рабочем месте, в помещении?

- сколько измерений достаточно для оценки помещения или рабочего места по фактору искусственной освещенности?

- усреднять необходимо по методу конверта или несколько измерений в одной точке?

- и ряд других вопросов, на которые я постараюсь ответить в этой статье.

Я сразу поставлю рамки этой статьи – рассматриваем вариант измерения уровня искусственной освещенности в помещении и на рабочем месте в горизонтальной плоскости.

Для начала необходимо разобраться в терминологии, так как большая часть проблем исходит как раз из-за незнания того фактора который мы измеряем. В помощь нам будут ГОСТ Р 56228-2014 «Освещение искусственное. Термины и определения», СП 52.13330.2011 «Свод правил. Естественное и искусственное освещение», СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» как основные документы с определением понятий в области измерения и оценки искусственного освещения.

Общее освещение – освещение открытых пространств или помещений (общее равномерное освещение) или отдельных зон (общее локализованное освещение) без учета специальных локальных требований.

Рабочая поверхность – поверхность, на которой проводят работу и для которой нормируют освещенность.

Средняя освещенность, Е ср, лк – освещенность, усредненная по заданной поверхности.

Минимальная освещенность, Е мин, лк – наименьшее значение освещенно сти, определенное в точках заданной плоскости.

Условная рабочая поверхность - Условно принятая горизонтальная поверхность, расположенная на высоте 0,8 м от пола.(СП 52.13330.2011).

Теперь определимся с объектом измерений: помещение или рабочее место. Как ни странно, но это разные объекты измерения и оценки. Помещение мы обычно оцениваем, когда нам необходимо провести оценку на соответствие СанПиН 2.2.1/2.1.1.1278-03. Практически все нормативы там указаны для помещений или для рабочих поверхностей внутри обследуемых помещений. С нормативом для рабочих сложнее. В настоящий момент практически нет санитарных нормативов для оценки освещенности на рабочих местах. Есть только проект СанПиН «Гигиенические требования к физическим факторам производственной среды», который уже несколько лет из стадии проекта так и не вышел. Да и в самом СанПиНе есть нормативы, но они опять увязаны к разряду зрительных работ, что подразумевает много подготовительных работ перед непосредственно измерением и оценкой полученных результатов.

Важным условием проведения измерений является учет засветки помещения наружным освещением (светом небосвода и солнца). Измерения следует проводить в темное время суток или когда отношение естественной освещенности к искусственной внутри помещения составит не более 0.1. То есть если нормируемое значение в помещении или на рабочем месте составляет 200 люкс, то измерения можно проводить, когда уровень естественной освещенности при всех выключенных светильниках составит не более 20 люкс. Возможно, скоро эксперты по аккредитации возьмут на вооружение этот пункт и будут требовать в протоколе учет засветки окон от внешнего источника.

Нормативное значение освещенности в СанПиН 2.2.1/2.1.1.1278-03 , установлены в точках ее минимального значения на рабочей поверхности внутри помещений . Таким образом, при оценке по этим Санитарным правилам, мы будем искать минимальное значение из всех значений полученных внутри помещения. Методика измерения минимальной освещенности описана в ГОСТ Р 54944-2012 «Здания и сооружения. Методы измерения освещенности». Контрольные точки измерения минимальной освещенности от рабочего освещения размещают в центре помещения под светильниками, между светильниками и их рядами, у стен на расстоянии от 0.15 L до 0.25 L , но не более 1 метра от стены, где L – расстояние между рядами светильников.

Таким образом, мы выполняем измерения во всех указанных точках этого примерного эскиза, и наши предварительные записи будут выглядеть таким образом:

201 240 180 237 195 Х Х Х Х Х
191 270 215 264 230 Х Х Х Х Х
185 242 230 230 229 Х Х Х Х Х
235 269 235 275 240 Х Х Х Х Х
Х Х Х Х Х Х Х Х Х Х
Х Х Х Х Х Х Х Х Х Х
Х Х Х Х Х Х Х Х Х Х
Примечание: Пустые клетки отмеченные Х тоже необходимо промерять.

В итоге мы получили сетку из предварительных результатов измерений, где желтым отмечены точки под светильниками, а серым между светильниками. Для того что бы сравнить с Санитарными нормами, нам необходимо выбрать наименьшее значение из полученных измерений. В нашем случае E min = 180 люкс, что и будет оценочным значением для всего помещения. Для расчета расширенной неопределенности результата измерений, нам необходимо провести многократные измерения не менее 4 раз и точка минимального значения будет расчетной. Все необходимые формулы и ход расчетов есть в ГОСТ Р 8.736-2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения». Можно провести измерения один раз, но тогда для расширенной неопределенности вводится коэффициент охвата 2 в соответствии с Р 50.2.038-2004 «Рекомендации по метрологии. Измерения прямые однократные. Оценивание погрешностей и неопределенности результата измерений. Подробнее об этом можно прочитать в статье:

Данный случай работает только для помещения без отдельных рабочих мест или в том случае если все помещение является рабочим местом.

Одна из ключевых ошибок совершаемых специалистами лабораторий – это расчет среднего значения по результатам полученных измерений и сравнивание с гигиеническим нормативом. Как я уже выше писал, СанПиН 1278-03 нормирует освещенность в точках ее минимального значения на рабочей поверхности, а значит, и выбирать мы должны минимальное значение. Среднее значение всегда больше минимального и для нашего случая составит Еср – 230 люкс, что при нормативе в 200 люкс в первом случае позволит сделать заключение о несоответствии помещения санитарным нормам, что правильно, а во втором случае сделает возможным сделать положительное заключение о соответствии, что будет считаться ошибкой в работе лаборатории или того эксперта который делал измерения и производил оценку.
Уважаемые коллеги!
С 03 по 07 февраля 2020 года Учебный центр ФБУЗ «Центр гигиены и эпидемиологии в Краснодарском крае» организует проведение очного обучения на курсах повышения квалификации в г. Сочи