Из чего состоит газовая турбина. О газовых турбинах для не инженеров. Вспомогательная силовая установка

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах - газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними - и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

Газотурбинная установка (ГТУ) состоит из газотурбинного двигателя (ГТД) и вспомогательных устройств.В состав двигателя входят: газовая турбина, камера сгорания, компрессор, воздухоохладитель, регенеративные теплообменники. К вспомогательным устройствам, в зависимости от назначения ГТУ, можно отнести: газоотводящие устройства (газоходы, борова, трубы), пусковые устройства, масляные системы, элементы водоснабжения и т. п.ГТУ предназначена либо для выработки электроэнергии, либо для привода механизмов. Принцип работы газовой турбины аналогичен паровой. Однако ра­бочим телом здесь являются продукты сгорания топлива. Основное различие связано со свойствами рабочих тел и их параметрами: давление продуктов сгорания ниже, а температура выше, чем у пара. ГТУ намного проще, т.к. нет парциального подвода газа, регулирующей ступени, и отборов промежуточных ступеней. Относительно небольшой располагаемый теплоперепад определяет небольшое количество ступеней, и к тому же разница между высотами лопаток1й и последней ступеней меньше, чем у паровой. Почти все современные газовые турбины работают по такой схеме, при которой продукты сгорания проходят через ее проточную часть. Поэтому в газовых турбинах топливо должно содержать очень малое количество золы и других вредных примесей. К такому топливу можно отнести природный газ, хорошо очищенные искусственные газы (до­менный, коксовый, генераторный) и специальное газотурбинное жидкое топливо (прошедшее обработку дизельное моторное, соляровое масло).

В связи с высокой температурой газов (1100 0 К) детали проточной части (сопла, диски, валы, рабочие лопатки) изготавливают из высококачественных легированных сталей. У большинства турбин предусмотрено интенсивное воздушное охлаждение наиболее нагретых деталей. Подготовка рабочей смеси производится в камере сгорания. Тепловой КПД КС КС = 0,970,99 устанавливают,в основном, цилиндрические камеры. Объём камеры разделяется на зону горения, где происходит сгорание топлива при Т = 2000 0 С и зону смешения, где к продуктам сгорания подмешивают воздух для снижения температуры. В камерах устанавливают несколько форсунок, что позволяет регулировать тепловую мощность изменением числа работающих форсунок. Тепловая мощность камеры доходит до 40 МВт при давлении 0,4 – 0,45 МПа. Расход топлива до 3000кг/ч, расход воздуха 2,5*10 5 м 3 /ч. В ГТУ применяют осевые и реже центробежные компрессоры. Осевые конструируют на расход воздуха 100 – 200 м 3 /с; степень повышения давления до 1,35. Т.о. для обеспечения необходимого давления число ступеней делают более 10. КПД осевого компрессора 83 – 90%. Центробежные применяют небольшой мощности – до 400кВт; КПД одноступенчатых - 7585%. Жаропрочность материалов деталей ГТ не позволяет иметь температуру свыше 1100 К и только в авиационных турбинах, которые имеют ограниченный моторесурс, температура может достигать 1500 0 К. Снижение температуры на входе в компрессор Т 1 значительно влияет на внутренний КПД i , т.к. Т 1 значительно зависит от климата района. Поэтому ГТУ экономичнее работают в районах с более низкой среднегодовой температурой воздуха.

КПД простейших ГТУ не превышает 14 – 18% и для его повышения используют регенеративный подогрев сжатого воздуха отработавшими газами после газовой турбины, т.е. используют теплоту выхлопных газов для предварительного подогрева воздуха перед камерой сгорания.

Подогрев производят в регенераторах, которые представляют собой трубчатый теплообменник, где для получения высоких коэффициентов теплоотдачи от газа и воздуха применяют высокие скорости потока, а это снижает КПД реального цикла из-за увеличения сопротивления газовоздушного тракта.

ГТУ с промежуточным охлаждением и подогревом рабочего тела уменьшает работу сжатия в компрессоре и увеличивает работу расширения в ГТ.

Атмосферный воздух сжимается в компрессоре низкого давления КНД, затем охлаждается в водяном теплообменнике ВО, далее снова сжимается в компрессоре высокого давления КВД и поступает в камеру сгорания высокого давления КСВ, продукты сгорания расширяются в газовой турбине высокого давления ТВД, подогреваются в камере сгорания низкого давления КСН, затем снова расширяются в турбине низкого давления ТНД. Чем больше промежуточных ступеней подогрева и охлаждения, тем выше КПД установки, но это усложняет конструкцию, поэтому в современных ГТУ применяют не более 2 промежуточных охладителей воздуха и одного промежуточного подогревателя.

Для ГТУ характерно высокое количество отходящих газов и достаточно высокая температура – 400 – 500 0 С. Эту теплоту можно использовать для получения пара и горячей воды в обычных теплообменниках. Так установки ГТ-25-700 ЛМЗ снабжены сетевыми подогревателями, обеспечивающими подогрев воды до 150-160 0 С. Сочетание преимуществ парового и газотурбинного цикла привел к созданию парогазовых установок ПГУ (до 200МВт). Работают на параметрах до 14МПа (паровая часть) и 570 0 С, а газовый агрегат 0,65 МПа и 770 0 С. Паровая турбина работает в комплекте с электрогенератором мощностью 165 МВт, а газовая турбина 33 МВт. ГТУ применяют в энергетике для покрытия пиковых нагрузок и в качестве аварийного резерва.

25.Схема ДВС. Принцип работы .

Поршневым двигателем внутреннего сгорания (ДВС) называется тепловая машина в рабочем цилиндре которой происходит сжигание топлива и преобразование теплоты в работу.

Принципиальная схема ДВС показана на рис.28.1. основным элементом любого поршневого двигателя является цилиндр 4 с поршнем 5, соединенным посредством кривошипно-шатунного механизма с внешним потребителем работы. Цилиндр монтируется на верхней части картера 1 ; он сверху закрыт крышкой, в которой установлены впускной 2 и выпускной 3 клапаны и электрическая свеча зажигания (в карбюраторном или газовом двигателях) или форсунка (в дизеле). В зарубашечном пространстве цилиндра и его головки циркулирует охлаждающая жидкость.

В картере монтируется коленчатый вал, кривошип 7, который шарнирно соединен с шатуном 6. Верхняя головка шатуна сочленена с поршнем, который совершает прямолинейное возвратно-поступательное движение в цилиндре. Кроме основных деталей двигатель имеет ряд вспомогательных механизмов для подачи топлива, смазки, для охлаждения и другие устройства, необходимые для его обслуживания.

Крайнее положение поршня называют верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). Ход поршня от ВМТ до НМТ называют ходом (тактом поршня). Объем, описываемый поршнем за 1 ход, является рабочим объемом цилиндра.

Анализ рабочего цикла обычно производят с помощью индикаторной диаграммы, на которой графически изображена зависимость давления в цилиндре от объема, занятого газом, или положения поршня.

Различается 2 типа поршневых ДВС –четырехтактные и двухтактные.

Рисунок 28.2а. Отдельным процессам соответствуют: 0-1 – всасывание топливной смеси (1-й такт); 1-2- сжатие смеси (2-й такт); 2-3 – сгорание; 3-4 – расширение продуктов сгорания; 4-5 – выхлоп (3-й такт); 5-0 – выталкивание продуктов сгорания (4- й такт).

Из всех 4-х тактов составляющих цикл только в 3-м получается полезная работа, в остальных 3-х тактах работа затрачивается.

Рисунок 28.2б. : 0-1 – введение новой порции смеси; 1-2 – сжатие -1-й такт; 2-3 – сгорание; 3-4 – расширение; 4-0 – выхлоп (2-й такт).

Двигатели с «мгновенным сгоранием» топлива (карбюраторные и газовые). В цилиндр такого двигателя всасывается горючая смесь, которая в нужный момент поджигается от внешнего источника. Время сгорания готовой смеси очень мало, в связи с чем допустимо считать, что процесс сгорания осуществляется при (почти) постоянном объеме.

Двигатели со сгоранием топлива при (почти) постоянном давлении (компрессорные дизельные двигатели. В цилиндре двигателя сжимается чистый воздух. В конце сжатия в цилиндр впрыскивается топливо, которое в процессе смешения с горячим воздухом воспламеняется и сгорает при постоянном давлении.

Двигатели со смешанным сгоранием топлива (бескомпрессорные дизельные двигатели). В цилиндре двигателя тоже сжимается чистый воздух, а жидкое топливо подается форсункой в мелко-распыленном виде в цилиндр в конце такта сжатия.

Все типы двигателей могут выполняться как 4-х тактными, так и 2-х тактными.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, где смешивается с топливом и происходит возгорание смеси. В результате сгорания возрастает температура, скорость и объём потока газа. Далее энергия горячего газа преобразуется в работу. При входе в сопловую часть турбины горячие газы расширяются, и их тепловая энергия преобразуется вкинетическую. Затем, в роторной части турбины, кинетическая энергия газов заставляет вращаться ротор турбины. Часть мощности турбины расходуется на работу компрессора, а оставшаяся часть является полезной выходной мощностью. Газотурбинный двигатель приводит во вращение находящийся с ним на одном валу высокоскоростной генератор. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Энергия турбины используется в самолётах , поездах , кораблях и танках .

История

  • 60: Первая паровая турбина Герона Александрийского (эолипил ) - на протяжении столетий рассматривалась как игрушка и её полный потенциал не был изучен.
  • 1500: В чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.
  • 1551: Таги-аль-Дин придумал паровую турбину , которая использовалась для питания самовращающегося вертела.
  • 1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице Джованни Бранка.
  • 1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.
  • 1791: Англичанин Джон Барбер получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.
  • 1872: Франц Столц разработал первый настоящий газотурбинный двигатель.
  • 1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно (Турбиния). Этот принцип тяги используется до сих пор.
  • 1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кэмбридже и использовались для электрического освещения улиц города.
  • 1903: Норвежец, Эджидиус Эллинг, смог построить первую газовую турбину, которая могла произвести больше энергии, чем требовалось для её работы, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 hp (существенно для того времени).

Его работа впоследствии была использована сэром Фрэнком Уиттлом .

  • 1913: Никола Тесла запатентовал турбину Тесла, основанную на эффекте граничного слоя.
  • 1918: General Electric , один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.
  • 1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором Аланом Арнольдом Грифицем.
  • 1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения. Впервые этот двигатель был успешно использован в апреле 1937.
  • 1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.
  • 1936: Ханс фон Охайн and Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.

Теория работы

Газовые турбины описываются термодинамическим циклом Брайтона , в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

На практике, трение и турбулентность вызывают:

  1. Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  2. Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  3. Потери давления в воздухозаборнике , камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

цикл Брайтона

Типы газовых турбин

Авиационные и реактивные двигатели

Диаграмма реактивного двигателя газовой турбины

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Авиационные двигатели также часто используются для генерации электрической мощности, благодаря их способности запускаться, останавливаться и изменять нагрузку быстрее, чем промышленные машины. Они также используются в судовой промышленности для снижения веса. GE LM2500 и LM6000 - две характерных модели этого типа машин.

Любительские газовые турбины

Существует популярное хобби - конструировать газовые турбины из автомобильных турбокомпрессоров. Камера сгорания собирается из отдельных частей и устанавливается вертикально между компрессором и турбиной. Как и многие хобби, основанные на технологии, время от времени они перерастают в производство. Несколько мелких компаний производят маленькие турбины и запасные части для любителей.

Вспомогательная силовая установка

Вспомогательная силовая установка - небольшая газовая турбина, являющаяся дополнительным источником мощности, например, для запуска маршевых двигателей самолетов. ВСУ обеспечивает бортовые системы сжатым воздухом (в том числе для вентиляции салона), электроэнергией и создает давление в гидросистеме летательного аппарата.

Промышленные газовые турбины для генерации электричества

Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно ниже, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД - до 60 % - при этом теплота выхлопа газовой турбины используется в рекуперативном генераторе пара для работы паровой турбины. Они также могут работать в когенераторных конфигурациях: выхлоп используется для обогрева или нагрева воды или в абсорбционных холодильниках. Коэффициент использования топлива в когенераторном режиме может превышать 90 %.Турбины в больших промышленных газовых турбинах работают на синхронных с электросетью скоростях - 3000 или 3600 оборотов в минуту (об./мин.). Газовые турбины простого цикла в индустрии электропитания требуют меньших капитальных затрат, чем угольные или ядерные энергоустановки, и могут выпускаться как для большой, так и для малой мощности. Весь процесс монтажных работ может быть выполнен за нескольких недель (нескольких месяцев), в сравнении с годами, требуемыми для создания паровых электростанций базовой мощности. Другое их главное преимущество - способность включаться/выключаться в течение нескольких минут, поставляя добавочную мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до пары дюжин часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости региона. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части дня и даже вечером. Типичная большая турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %. КПД лучших турбин достигает 64 %.

Хранилища сжатого воздуха

Одна из современных разработок для повышения КПД заключается в том, чтобы разделить компрессор и турбину хранилищем сжатого воздуха. В традиционной турбине, до половины генерируемой мощности используется для привода компрессора. В конфигурации с хранилищем сжатого воздуха для привода компрессора используется мощность, к примеру, ветровой электростанции или купленная на открытом рынке по низкой цене, а сжатый воздух освобождается для работы турбины, по мере необходимости.

Турбовальные двигатели

Микротурбина имеет компрессор, одноступенчатую радиальную турбину, инвертор и рекуператор . Тепло дымовых газов может быть использовано для подогрева воды, воздуха, процессов осушения или в абсорбционно-холодильных машинах - АБХМ, которые создают холод для кондиционированния воздуха, используя бесплатную тепловую энергию, вместо электрической энергии.

КПД типовых микротурбин массового производства достигает 35 %. В режиме комбинированной генерации электричества и тепловой энергии - когенерации, может достигаться высокий коэффициент использования топлива - КИТ, выше 85 %.

Преимущества микротурбин:

Эластичность и адаптивность к восприятию электрических нагрузок в диапазоне от 1 до 100% возможность длительной работы микротурбины на предельно низкой мощности - 1%, низкий уровень эмиссий, отсутствие дымовых труб, отсутствие в микротурбинах моторного масла, смазки отсутствие охлаждающих жидкостей, быстрое и технологичное подключение к топливным магистралям, электрическим коммуникациям и тепловым сетям, сервисное обслуживание микротурбины – 1 день, 1 раз в году, низкий уровень шума, предельно малый уровень вибраций микротурбины, система дистанционного контроля, компактные размеры микротурбины, возможность размещения микротурбинной электростанции на крышах зданий, высокое качество производимой электроэнергии ввиду наличия инвертора, комбинированное производство электроэнергии и тепла (когенерация).

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолченная биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе, продукты сгорания проходят сквозь турбину. В косвенной системе, используется теплообменник и чистый воздух проходит сквозь турбину. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Использование в транспортных средствах

The 1950 Rover JET1

A 1968 Howmet TX - единственная в истории турбина, принесшая победу в автомобильной гонке.

Газовые турбины используются в кораблях, локомотивах, вертолетах и танках. Множество экспериментов проводилось с автомобилями, оснащенными газовыми турбинами.

В 1950 году дизайнер Ф.Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировал первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решетки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине , парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в Лондоне в Музее Науки.

Команды Rover и British Racing Motors (BRM) (Формула-1) объединили усилия для создания Rover-BRM, авто, с приводом от газовых турбин, которое приняло участие в гонке 24 часа Ле-Мана 1963 года, управляемое Грэмом Хиллом и Гитнером Ричи. Оно имело среднюю скорость - 107,8 миль/ч (173 км/ч), а максимальную скорость - 142 миль/ч (229 км/ч). Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо - газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля - в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1-2 Изоэнтропическое сжатие.
  • 2-3 Изобарический подвод теплоты.
  • 3-4 Изоэнтропическое расширение.
  • 4-1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1-2p-3-4p-1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1-2-3-4-1)
Реального (1-2p-3-4p-1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 - степень повышения давления в процессе изоэнтропийного сжатия (1-2);
  • k - показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 - температура холодильника;
  • T2 - температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.



Наиболее широкое применение в турбореактивных двига­телях получили одноступенчатые и двухступенчатые осевые реактивные газовые турбины.

Одноступенчатой турбиной называется такая, которая имеет сопловой аппарат и один ряд рабочих паток. Термин “осевая” показывает, что поток газов подводится к лопаткам турбины параллельно оси вращения колеса.

Реактивная газовая турби­на - это такая турбина, в кото­рой расширение газов происхо­дит не только в сопловом аппа­рате, но продолжается и в кана­лах рабочего колеса турбины, и которой расширение газов полностью заканчивается в сопловом аппарате, называется активной газовой турбиной. В активной турбине давление газов до и после колеса турбины одинаковы.

Рабочим телом в газовой турбине являются газы, образующиеся от сгорания керосина или какого-либо другого топлива в потоке сжатого воздуха.

Познакомимся с конструкцией одноступенчатой осевой газовой турбины. Схема турбины приведена па рис. 26. Тур­бина состоит изсоплового аппарата, диска турбины с рабо­чими лопатками и вала с подшипниками.

Рис. 26. Схема осевой газовой турбины. Рис. 27. Детали соплового аппарата.

Сопловой аппарат (рис. 27) имеет внешний и внутренний венцы, между которыми свободно вставлены лопатки соплового аппарата. Такая посадка лопаток обеспечивает свободное удлинение их при нагревании (лопатки находятся в потоке газов, имеющих температуру 850 - 900° С, и при работе нагреваются до светло-красного цвета). Чтобы лопатки со­плового аппарата могли длительное время работать при вы­сокой температуре, они отлиты из жаростойкого сплава.

Диск турбины (рис. 28) для прочности изготавливается сплошным, без отверстия в центре; он утолщается к центру и к ободу, где крепятся лопатки.

Рис. 28. Ротор турбины.

Рабочие лопатки изготавливаются из жаропрочного сплава, крепятся к ободу “елочным” замком, который обес­печивает свободную посадку лопатки - лопатка может ка­чаться {рис. 29). Замок называется елочным потому, что вид его имеет форму елки.

Рис. 29. Замок лопатки турбины.

К фланцу диска крепится вал турбины, передающий кру­тящий момент компрессору и агрегатам двигателя.

Для уменьшения утечки горячих газов по ободу диска проточены канавки лабиринтного уплотнения.

Диск турбины с лопатками и валом называют ротором. Лопатки соплового аппарата и диска имеют в сечении вид изогнутых аэродинамических профилей (крылышек).

Во время работы турбореактивного двигателя к турбине подходят горячие газы из камер сгорания; газы имеют давле­ние порядка 4 - 7 кг/см 2 , температуру 850 - 900° С и скорость 170 - 180 м/сек.

Рассмотрим, как изменяются давление, температура и скорость газов при протекании их по каналам турбины и как энергия газов преобразуется в механическую работу. Характерные сечения газового потока, движущегося по каналам турбины, приведены на рис. 26:

3-3 - на входе газов в тур­бину;

а -а - на выходе газов из соплового аппарата;

4-4 - на выходе газов из ко­леса турбины.

Как было указано выше, к ло­паткам соплового аппарата подхо­дят горячие газы со скоростью по­рядка 170 - 180 м/сек. В сопловом аппарате на участке 3 - а газы, двигаясь в сужающемся канале, увеличивают свою скорость движе­ния (за счет паления давления и температуры) до с а =580 - 600 м/сек. Одновременно с расши­рением поток газа поворачивается сопловым аппаратом и направ­ляется на лопатки колеса под углом а =20 - 28° {рис. 30). Лопатки колеса движутся с окружной скоростью и. Вычтем из абсолютной скорости газа с а окружную скорость вращения колеса и, получим относительную скорость газа w а , с которой газ входит в каналы рабочего колеса. В канале между лопатками колеса газ продолжает расширяться - его давление падает, температура уменьшается. Работа расши­рения расходуется на ускорение струйки газа, движущейся в канале.

Абсолютная скорость газа на выходе из колеса с 4 опреде­лится как сумма окружной скорости колеса и и относитель­ной скорости выхода газа из колеса w а. Для турбин турбо­реактивных двигателей с 4 = 350 - 400 м/сек и направлена по оси двигателя. Скорость выхода газов из колеса турбины меньше скорости входа газа в колесо на 150 - 200 м/сек.

Профили лопаток колеса подобраны так, что между ними образуются изогнутые сужающиеся каналы. При протекании газовой струйки по каналу происходит поворот ее, благодаря чему у частиц газа появляются центробежные силы, которые давят на вогнутую поверхность лопатки – “корытце”.

На вогнутой поверхности лопаток создается повышенноt давление, а на выпуклой стороне лопаток (па спинке) обра­зуется пониженное давление (разрежение).

Результирующая сила направлена под некоторым углом к плоскости вращения колеса (см. рис. 30). Эту силу можно разложить на две составляющие. Одна сила направлена по оси колеса - это осевое усилие, оно нагружает упорный под­шипник. Другая сила действует в плоскости вращения колеса; эта сила называется окружным усилием.

В реактивной турбине при движении струйки газа в су­жающемся канале между лопатками колеса происходит ускорение этой струйки газа.

Относительная скорость струйки на выходе из колеса w 4 больше относительной скорости струйки на входе в колесо w а, что хорошо видно на рис. 30.

За счет ускорения струйки газа возникает сила реакции, которая гоже дает окружное усилие.

Таким образом, в реактивной газовой турбине окружное усилие получается в результате поворота струйки газов в ло­паточном канале и ускорения этой же струйки газа в этом же канале.

Рис. 30. Возникновение окружного усилия от поворота струйки газа в канале между лопатками колеса

Если сложить все окружные усилия, получающиеся на каждой лопатке колеса, то получим общее, суммарное окружное усилие, которое вращает диск турбины.

Подсчитаем мощность турбины на основе учета работы расширения газов в турбине.

Работу расширения 1 кг газа, протекающего через тур­бину, определим по уравнению энергии потока газов:


где G ce к - секундный расход газов через турбину; L расш - действительная работа расширения 1 кг газов.

Принимая С гек - 60 кг/сек и L расш = 20900 кгм/кг, получим N ТУРБ = 13900 л.с.

Мощность, развиваемая турбиной, должна быть на 1,5 - 2% больше мощности, потребляемой компрессором. Этот избыток мощности расходуется на привод вспомогательных агрегатов (насосов, генераторов, автоматов) и на преодоле­ние сил трения в подшипниках и передачах.