Гидроакустическая станция. Радиотехническое и навигационное оборудование Гидроакустические средства подводных лодок


Владельцы патента RU 2427004:

Техническое решение относится к конструктивному выполнению средств гидрофизических исследований и может быть использовано, например, при реализации систем акустической томографии или систем пассивного обнаружения шумящих объектов. Техническим результатом изобретения является расширение функциональных возможностей. Автономная радиогидроакустическая станция (APГАС) содержит малогабаритный гидроакустический антенный комплекс (МГАК) и гибкую конструкцию радиобуя, наполняемую углекислым газом (РБ), цилиндрическую гидроакустическую антенну, приемопередатчик, источник питания, антенно-фидерное устройство, спутниковые системы связи «Гонец» и навигации «Глонасс», модуль обработки и управления (МОУ), датчики крена, дифферента и компас. При этом используется две звукопрозрачные антенные решетки цилиндрической формы, реализующие по пассивной технологии определение места шумящего объекта относительно выбранной системы координат. 3 ил.

Техническое решение относится к конструктивному выполнению средств гидрофизических исследований и может быть использовано, например, при реализации систем акустической томографии или систем пассивного обнаружения шумящих объектов.

При проведении гидроакустического мониторинга широко используются различные средства гидроакустического наблюдения, в том числе автономные буйковые станции.

Автономная буйковая станция (АБС), рассмотренная в работе , выбранная в качестве прототипа, использует для сбора данных 8 гирлянд с 8 первичными датчиками соединенных последовательно. АБС предназначена для выполнения долговременного гидрофизического мониторинга с возможностью определения места и оперативной передачи данных для чего используются спутниковая система передачи данных типа «Гонец» и навигации «ГЛОНАСС». Такие буйковые станции могут устанавливаться на тросе с помощью якоря в прибрежных зоне и в открытом океане или дрейфовать в океане. Оснащенные комплексом океанологических приборов АБС регулярно измеряют и передают полученные данные на центр обработки данных (ЦОД) по радиоканалу в том числе по спутниковому каналу связи. Для дрейфующей АБС предусмотрена спутниковая навигационная система.

АБС состоит из герметичного аппаратурного модуля АБС в составе блока управления, источника питания. В наружу вынесены под радиопрозрачным колпаком антенна спутниковой систем связи «Гонец» и навигации «Глонасс» с абонентным пунктом, проблесковый световой маяк и радиоантенна, которые установлены на поплавке изготовленного из синтактического материала. Кабель заведен в аппаратурный модуль с помощью гермоввода, для страховки сигнального кабеля от рывков применяется страховочные фалы, которые крепятся к кабелю с помощью специальных зажимов. За сигнальный кабель последовательно подключаются все восемь элементов «гирлянды» с первичными датчиками.

Основным недостатком прототипа является ограниченная возможность использования АБС в качестве только линейной антенны с количеством от 8 до 64 первичных датчиков (гидрофонов), имеющая направленность только в вертикальной плоскости.

Известны приемные акустические антенны с линейным и цилиндрическим размещением приемных элементов, имеющие раздвижную конструкцию, обеспечивающую малые габариты в транспортном положении и необходимый волновой размер в рабочем положении, например акустические антенны современных зарубежных вертолетных станций FLASH, CORMORANT, HELRAS или отечественной станции «Приемная антенна гидроакустической станции кругового обзора» . Эти станции предназначены для работы в паре с воздушными или надводными судами обеспечения (например, вертолетами).

Предлагаемая автономная радиогидроакустическая станция (АРГАС) конструктивно состоит (фиг.1) из малогабаритного гидроакустического антенного комплекса 2 (МГАК) и радиобуя 1 (РБ), соединенных кабель-тросом 7. АРГАС предназначена как для работы в паре с обеспечивающими воздушными и надводными судами, так и в автономном режиме. В транспортном положении РБ 1 и МГАК 2 (фиг.2) помещены в отделяемый при погружении в воду цилиндрический защитный кожух 11. Габаритные размеры АРГАС в транспортном положении: диаметр 150 мм, осевая длинна 900 мм. В отсеке носителя диаметром 324 мм размещается до трех АРГАС.

Конструкция радиобуя 1 надувная, при выдергивании чеки срабатывает клапан баллона со сжатым углекислым газом и происходит наддув гибкой конструкции РБ 1. Во внутреннем объеме РБ размещены: приемопередатчик, источник питания, антенно-фидерное устройство, спутниковые системы связи и навигации, клапан избыточного давления. Выдергивание чеки клапана избыточного давления осуществляется при разъединении защитного кожуха 11. При постановке с воздушного судна при выходе защитного кожуха АРГАС из отсека носителя происходит раскрытие парашютной системы 12 и наполнение углекислым газом гибкой конструкции РБ 1. Вместе с защитным кожухом 11 от АРГАС разъединяется также парашютная система 12 связанная с кожухом посредством стропов парашюта.

Механизм раскрытия (10 в транспортировочном, 5 в рабочем положениях) приемно-излучающей антенны построен на использовании плоских пружин. Механизм действует следующим образом, защитный кожух, крепится к корпусу МГАК 2 при помощи замков, замки удерживаются в замкнутом состоянии проволокой из нихрома. После погружения АРГАС в воду приводится в действие механизм развертывания МГАК 2. На защитный кожух 11 подается напряжение относительно корпуса МГАК 2, начинает идти электрохимическая реакция между проволокой удерживающей замки и корпусом, проволока обрывается, защитный кожух 11 разъединяется вследствие разрушения гидростата 13, под воздействием гидростатического давления соответствующей глубине погружения МГАК 30-50 метров высвобождая, гидроакустические преобразователи.

Приемная антенна МГАК 2 представляет собой две звукопрозрачные антенные решетки цилиндрической формы, причем антенная с малой формой вложена в антенну большой формы. В развернутом положении диаметр внешнего цилиндра (большая форма) 670 мм, диаметр внутреннего (малая форма) меньше на 0,5 длины волны, высота антенны 605 мм. В каждом цилиндре по 32 вертикальных элемента, каждый элемент представляет собой единую, жесткую конструкцию линейной антенны 3 из 8 гидрофонов.

Излучающая антенна 4 выполняется в виде цилиндра, в составе которого 8 цилиндрических гидроакустических излучателя. Диаметр цилиндра 80 мм, высота - 290 мм.

Модуль обработки и управления (МОУ) 6 включает в себя тракт приема, оцифровки и обработки г/а информации, формирование и усиление зондирующих сигналов, поддержание канала связи с РБ 1. В составе модуля датчики крена, дифферента и компас, показания которых используются в обработке информации.

МОУ 6 для задачи, реализующей по пассивной технологии определение места шумящего объекта относительно выбранной системы координат по алгоритму в специальном вычислителе, МОУ 6 определяет необходимые параметры и передает далее по кабелю 7 эти данные поверхностному РБ 1. В МОУ 6 реализованы алгоритмы первичной обработки сигналов, включая процедуры адаптации к многокомпонентному полю помех, алгоритмы вторичной обработки, включая алгоритмы трассового обнаружения и алгоритмы автоматической классификации обнаруженных объектов.

Кабель-трос 7 (фиг.1), соединяющий РБ 1 с МГАК 2 имеет участок с распределенной плавучестью 8 и участок с распределенным балластом 9. Использование такого решения позволяет снизить влияние поверхностного волнения РБ 1 на МГАК 2.

Литература

1. Малашенко А.Е., Перунов В.В., Филимонов В.И., Рожков B.C. Автономная буйковая гидрофизическая станция. Патент на ПМ №61245, 01.11.2005 г.

2. Афруткин Г.И., Волокитин С.Б. и др. Приемная антенна гидроакустической станции кругового обзора. Патент РФ №2178572, 20.01.2003.

Автономная радиогидроакустическая станция (АРГАС), содержащая малогабаритный гидроакустический антенный комплекс (МГАК) и гибкую конструкцию радиобуя, наполняемую углекислым газом (РБ), цилиндрическую гидроакустическую антенну, приемопередатчик, источник питания, антенно-фидерное устройство, спутниковые системы связи «Гонец» и навигации «Глонасс», модуль обработки и управления (МОУ), датчики крена, дифферента и компас, отличающаяся тем, что используются две звукопрозрачные антенные решетки цилиндрической формы, реализующие по пассивной технологии определение места шумящего объекта относительно выбранной системы координат.

Похожие патенты:

Изобретение относится к группе космических аппаратов, например спутников, предназначенных для перемещения строем, и, в частности, касается контроля относительных положений космических аппаратов по отношению друг к другу.

Гидроакустическая станция - средство звукового обнаружения подводных объектов с помощью акустического излучения.

По принципу действия гидролокаторы бывают:
Пассивные - позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом.
Активные - использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону гидролокатором.

Упрощённая блок-схема гидроакустической станции: а - шумопеленгатора (1 - неподвижная акустическая система, 2 - компенсатор, 3 - усилитель, 4 - индикаторное устройство); б - гидролокатора (1 - подвижная акустическая система, 2 - обтекатель, 3 - поворотное устройство, 4 - переключатель «приём-передача», 5 - генератор, 6 - усилитель, 7 - индикаторное устройство)

Акустическая система гидроакустической станции составляется из многих электроакустических преобразователей (Гидрофонов - у принимающих Г. с., вибраторов - у приёмоизлучающих Г. с.) для создания необходимой характеристики направленности приёма и излучения. Преобразователи размещаются (в зависимости от типа и назначения Г. с.) под днищем корабля на поворотно-выдвижном устройстве или в стационарном обтекателе, проницаемом для акустических колебаний, встраиваются в наружную обшивку корабля, монтируются в буксируемом кораблём или опускаемом с вертолёта контейнере, устанавливаются поверх опорной конструкции на дне моря. Компенсатор вносит в переменные токи, протекающие в электрических цепях разнесённых друг от друга гидрофонов, сдвиг фаз, эквивалентный разности времени прихода акустических колебаний к этим гидрофонам. Численные значения этих сдвигов показывают угол между осью характеристики направленности неподвижной акустических системы и направлением на объект. После усиления электрические сигналы подаются на индикаторное устройство (телефон или электроннолучевую трубку) для фиксирования направления на шумящий объект. Генератор активной Г. с. создаёт кратковременные электрические импульсные сигналы, которые затем излучаются вибраторами в виде акустических колебаний.
В паузах между ними отражённые от объектов сигналы принимаются теми же вибраторами, которые на это время присоединяются переключателем «приём- передача» к усилителю электрических колебаний. Расстояние до объектов определяется на индикаторном устройстве по времени запаздывания отражённого сигнала относительно прямого (излучаемого).

Г. с., в зависимости от их типа и назначения, работают на частотах инфразвукового, звукового и (чаще) ультразвукового диапазонов (от десятков гц до сотен кгц), излучают мощность от десятков вт (при непрерывном генерировании) до сотен квт (в импульсе), имеют точность пеленгования от единиц до долей градуса, в зависимости от метода пеленгования (максимальный, фазовый, амплитудно-фазовый), остроты характеристики направленности, обусловленной частотой и размерами акустические системы, и способа индикации. Дальность действия Г. с. лежит в пределах от сотен метров до десятков и более км и в основном зависит от параметров станции, отражающих свойств объекта (силы цели) или уровня его шумового излучения,а также от физических явлений распространения звуковых колебаний в воде (рефракции и реверберации) и от уровня помех работе Г. с.,создаваемых при движении своего корабля.

Г. с. устанавливают на подводных лодках, военных надводных кораблях (рис. 2), вертолётах, на береговых объектах для решения задач противолодочной обороны, поиска противника, связи подводных лодок друг с другом и с надводными кораблями, выработки данных для пуска ракето-торпед и торпед, безопасности плавания и др. На транспортных, промысловых и исследовательских судах Г. с. применяют для навигационных нужд, поиска скоплений рыбы, проведения океанографических и гидрологических работ, связи с водолазами и др. целей.

совокупность схемно и конструктивно связанных акустических, электрических и электронных приборов и устройств, с помощью которых производится приём или излучение либо приём и излучение акустических колебаний в воде.

Различают Г. с. только принимающие акустическую энергию (пассивного действия) и приёмоизлучающие (активного действия). Г. с. пассивного действия [Шумопеленгатор (рис. 1 , а), Г. с. разведки, Звукометрическая станция и др.] служат для обнаружения и определения направления (пеленга) на шумящий объект (движущийся корабль, Г. с. активного действия и др.) по создаваемым объектом акустическим сигналам (шумам), а также для прослушивания, анализа и классификации принятых сигналов. Пассивные Г. с. обладают скрытностью действия: их работу нельзя обнаружить. Г. с. активного действия [Гидролокатор (рис. 1 , б), рыболокатор, Эхолот и др.] применяют для обнаружения, определения направления и расстояния до объекта, полностью или частично погруженного в воду (подводной лодки, надводного корабля, айсберга, косяка рыбы, морского дна и т.д.). Достигается это посылкой кратковременных акустических импульсных сигналов в определённом или во всех направлениях и приёмом (во время паузы между посылками их) после отражения от объекта. Активные Г. с. способны обнаруживать как шумящие, так и не шумящие объекты, движущиеся и неподвижные, но могут быть обнаружены и запеленгованы по излучению, что является некоторым их недостатком. К активным Г. с. также относят станции звукоподводной связи (См. Звукоподводная связь), гидроакустические маяки (См. Гидроакустический маяк), гидроакустические Лаги, эхолёдомеры и др. акустические станции и приборы. Подробнее о методах пеленгования и определения местоположения см. в ст. Гидроакустика и Гидролокация.

Основными частями пассивных Г. с. являются: акустическая система (антенна), компенсатор, усилитель, индикаторное устройство. Активная Г. с., кроме того, имеет также генератор и коммутационное устройство, или переключатель «приём - передача».

Акустическая система Г. с. составляется из многих электроакустических преобразователей (Гидрофонов - у принимающих Г. с., вибраторов - у приёмоизлучающих Г. с.) для создания необходимой характеристики направленности приёма и излучения. Преобразователи размещаются (в зависимости от типа и назначения Г. с.) под днищем корабля на поворотно-выдвижном устройстве или в стационарном обтекателе, проницаемом для акустических колебаний, встраиваются в наружную обшивку корабля, монтируются в буксируемом кораблём или опускаемом с вертолёта контейнере, устанавливаются поверх опорной конструкции на дне моря. Компенсатор вносит в переменные токи, протекающие в электрических цепях разнесённых друг от друга гидрофонов, сдвиг фаз, эквивалентный разности времени прихода акустических колебаний к этим гидрофонам. Численные значения этих сдвигов показывают угол между осью характеристики направленности неподвижной акустических системы и направлением на объект. После усиления электрические сигналы подаются на индикаторное устройство (телефон или электроннолучевую трубку) для фиксирования направления на шумящий объект. Генератор активной Г. с. создаёт кратковременные электрические импульсные сигналы, которые затем излучаются вибраторами в виде акустических колебаний. В паузах между ними отражённые от объектов сигналы принимаются теми же вибраторами, которые на это время присоединяются переключателем «приём-передача» к усилителю электрических колебаний. Расстояние до объектов определяется на индикаторном устройстве по времени запаздывания отражённого сигнала относительно прямого (излучаемого).

Г. с., в зависимости от их типа и назначения, работают на частотах инфразвукового, звукового и (чаще) ультразвукового диапазонов (от десятков гц до сотен кгц ), излучают мощность от десятков вт (при непрерывном генерировании) до сотен квт (в импульсе), имеют точность пеленгования от единиц до долей градуса, в зависимости от метода пеленгования (максимальный, фазовый, амплитудно-фазовый), остроты характеристики направленности, обусловленной частотой и размерами акустические системы, и способа индикации. Дальность действия Г. с. лежит в пределах от сотен метров до десятков и более км и в основном зависит от параметров станции, отражающих свойств объекта (силы цели) или уровня его шумового излучения, а также от физических явлений распространения звуковых колебаний в воде (рефракции и реверберации) и от уровня помех работе Г. с., создаваемых при движении своего корабля.

Г. с. устанавливают на подводных лодках, военных надводных кораблях (рис. 2 ), вертолётах, на береговых объектах для решения задач противолодочной обороны, поиска противника, связи подводных лодок друг с другом и с надводными кораблями, выработки данных для пуска ракето-торпед и торпед, безопасности плавания и др. На транспортных, промысловых и исследовательских судах Г. с. применяют для навигационных нужд, поиска скоплений рыбы, проведения океанографических и гидрологических работ, связи с водолазами и др. целей.

Лит.: Карлов Л. Б., Шошков Е. Н., Гидроакустика в военном деле, М., 1963; Простаков А. Л., Гидроакустика в иностранных флотах, Л., 1964; его же, Гидроакустика и корабль, Л., 1967; Краснов В. Н., Локация с подводной лодки, М., 1968; Хортон Дж., Основы гидролокации, пер. с англ., Л., 1961.

С. А. Барченков.

  • - комплекс мероприятий по снижению уровня внбро-акустнческнх характеристик систем и механизмов ПЛ и надводных кораблей...

    Словарь военных терминов

  • - добывание сведений о противнике гидроакустическими средствами путём приёма, регистрации и анализа акустических колебаний, излучаемых или отражаемых кораблём, торпедой и др....

    Словарь военных терминов

  • - комплекс акустич., электрич. и электронных приборов для излучения или приёма звуковых колебаний в воде. Различают Г. с. пассивные, только принимающие колебания, и активные, излучающие и принимающие колебания...

    Большой энциклопедический политехнический словарь

  • - акустическое авиационное средство поиска подводных лодок. Представляет собой активно-пассивную гидроакустическую станцию, опускаемую с вертолета в толщу воды на кабель-тросе...

    Морской словарь

  • - полоса наблюдения за подводной обстановкой, организованная с помощью гидроакустических средств...

    Морской словарь

  • - скрытие подводных лодок и надводных кораблей от гидроакустических средств разведки противника...

    Морской словарь

  • - вид технической разведки, в ходе которой добывается информация о противнике путем приема, регистрации, обработки и анализа принятых гидроакустических сигналов...

    Морской словарь

  • - устройство, с помощью которого производится прием или излучение и последующий прием акустических колебаний в воде. широко применяются на кораблях, в авиации и в прибрежных районах для...

    Морской словарь

  • - аппаратура, состоящая из излучателей звука, установленных в фиксированных точках моря, и корабельной приемоиндикаторной гидроакустической аппаратуры с хронометром и самописцем...

    Морской словарь

  • - устройство, обеспечивающее прием и излучение гидроакустических сигналов в воде и обладающее пространственной избирательностью...

    Морской словарь

  • - гидроакустическая станция, предназначенная для получения информации об обстановке под слоем скачка...

    Морской словарь

  • - установка с электрическим генератором постоянного или переменного тока для выработки электрической энергии и снабжения ею потребителей...

    Морской словарь

  • - "...Техническое устройство, осуществляющее прием или излучение гидроакустического сигнала и обеспечивающее совместно с аппаратной частью станции или комплекса его пространственную избирательность.....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - совокупность схемно и конструктивно связанных акустических, электрических и электронных приборов и устройств, с помощью которых производится приём или излучение либо приём и излучение акустических...

    Большая Советская энциклопедия

"Гидроакустическая станция" в книгах

Станция назначения

Из книги ДАЙ ОГЛЯНУСЬ, или путешествия в сапогах-тихоходах. Повести. автора Чирков Вадим Алексеевич

Станция назначения Отцу моему посвящается Поезд увозил Алексея на войну. На войну, знал Алексей, на войну, думал он, поднимаясь в вагон, замедленными движениями размещая на нарах вещевой мешок, расстегивая крючки шинели; на войну,- хотя научен был говорить: фронт.Повестку

АТОМНАЯ СТАНЦИЯ

Из книги Избранные произведения. Т. I. Стихи, повести, рассказы, воспоминания автора Берестов Валентин Дмитриевич

АТОМНАЯ СТАНЦИЯ Широкой просеки пустырь. Не дрогнут синих сосен иглы. Тиха, бела, как монастырь, Обитель атома возникла, В ее таинственных стенах, В ее молчании заклятом Святою жизнью, как монах, Живет затворник - грозный атом. Здесь, адской силой наделен, Но адской воле

Станция

Из книги Память о мечте [Стихи и переводы] автора Пучкова Елена Олеговна

Станция Не знаю я, отправиться ль мне в путь? Взглянуть и плюнуть бы на все пейзажи с площадок погребальных. Был я даже на всех назойливых похоронах, обувши ноги в старые газеты. И проданы, и выпиты все вина, а для стихов – осталась лишь вода, и умирал я на краю колодца. А

Станция Казбек

Из книги Константин Коровин вспоминает… автора Коровин Константин Алексеевич

Станция Казбек Рано утром проснулся я чуть свет. Вся долина Терека была в синеве тумана и темных туч, а высоко выделялась на бирюзовом небе, розовея снегами, вершина Казбека в предутреннем рассвете. Покуда я нанимал подводу, собирал краски, инструменты для живописи, чтобы

ВОДНАЯ СТАНЦИЯ

Из книги Россия в концлагере автора Солоневич Иван

ВОДНАЯ СТАНЦИЯ На берегу Онежского озера была расположена водная станция Динамо. И в Москве и в Петербурге и в Медгоре водные станции Динамо были прибежищем самой высокой преимущественно чекистской, аристократии. Здесь был буфет по ценам кооператива ГПУ,

Станция Железнодорожная

Из книги Казачка автора Мордюкова Нонна Викторовна

Станция Железнодорожная Застолья на Кубани называют «сабантуями». Женщины исправно работают и за столом: незаметно меняют тарелки, подкладывают кому надо еду, разносят кружки с компотом или киселем, и точно так же подается и такое «блюдо», как песня. Сначала вроде бы

Станция Чир замолкла

Из книги Воспоминания адъютанта Паулюса автора Адам Вильгельм

Станция Чоп

Из книги Когда я был маленьким, у нас была война автора Олефир Станислав Михайлович

Станция Чоп Случалось, у нас в доме не было даже горсти крупы, чтобы сварить кондер, - жидкий в несколько крупинок суп, без картошки и каких-либо приправ. Вся надежда была на хлеб, который папа получал на карточку. Папа разрезал его на ровные дольки, и всей семьей

Станция Чир замолкла

Из книги Катастрофа на Волге автора Адам Вильгельм

Станция Чир замолкла Усталость в конце концов одолела меня. Но недолго длился сон, принесший забвение. Около двух часов ночи меня бесцеремонно разбудили. Передо мной стоял полковник Арнольд, начальник связи армии.- Комендант станции Чир больше не отвечает. Мои линейные

Станция Морозовская

Из книги Одна жизнь - два мира автора Алексеева Нина Ивановна

Станция Морозовская Рано утром мы прибыли на тихую, спокойную станцию Морозовскую. Здесь расформировали поезд, вагоны с военными отцепили от общего состава, мы сошли и решили передохнуть, переждать.После такой напряженной жизни в Москве, мы как будто сразу попали здесь

Станция

Из книги Творцы и памятники автора Яров Ромэн Ефремович

Станция Все бы хорошо было в жизни Горячкина, да то плохо, что негде испытывать машины. Теоретических трудов у него много, кое-какие закономерности установлены. Надо теперь строить машины и испытывать их. Пора в металле воплощать результаты своих исследований.А где это

Гидроакустическая станция

Из книги Большая Советская Энциклопедия (ГИ) автора БСЭ

Станция

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Док-станция

Из книги Ноутбук для начинающих. Мобильно, доступно, удобно автора Ковалевский Анатолий Юрьевич

Док-станция Док-станция (модульная станция, доковая станция, стыковочная станция, крэдл, Docing Station, Docking Station, Desk Station, Slice Station, Cradle) – специальная подставка под ноутбук, расширяющая его возможности и вычислительные ресурсы до уровня настольного компьютера. Ведь любой

Станция

Из книги Возрастной шовинизм (декабрь 2007) автора Русская жизнь журнал

Станция Основа погружена во тьму. Ни в станционном здании, ни в пристанционных домиках - ни огонька. Я, наивный, изучил карту, думал, выйду по Вокзальной улице на проспект Гагарина, а там на чем-нибудь доеду до центра, такси поймаю, если что. Да, щас. В этой полной тьме гораздо

Командования ВМС и других стран в планах расширяющихся военных приготовлений большое внимание уделяют вопросам борьбы с подводными лодками.

По мнению зарубежных специалистов, успех борьбы с подводными лодками будет зависеть прежде всего от своевременного обнаружения лодок, классификации и определения их местоположения. Решение этих задач возлагается главным образом на гидроакустические средства, которые по сравнению с неакустическими обладают рядом преимуществ:

  • большой дальностью действия;
  • сравнительно высокой точностью определения координат обнаруженных подводных целей;
  • возможностью автоматизации процесса обработки полученных данных.

Наибольшее распространение гидроакустические средства получили в ВМС США, Франции, Великобритании, Канады и Японии.

Гидроакустические средства подводных лодок

С начала 70-х годов на вооружении американских атомных торпедных подводных лодок типов «Пермит» и «Стёрджен» состоит комплексная гидроакустическая система AN/BQQ-2, применяющаяся в системе ПЛУРО «Саброк» при стрельбе на дальностях до 55 км. В её состав входят гидроакустические станции (ГАС) AN/BQS-6A и -6В, шумопеленгаторная станция (ШПС) AN/BQR-7, станция классификации целей AN/BQQ-3, вычислители-индикаторы AN/BQA-3A и -3В, ШПС определения координат пассивным методом AN/BQG-2 и -4, записывающе-анализируюшая аппаратура AN/BQH-2 и станция звукоподводной связи (ЗПС) AN/BQA-2.

Станция типа AN/BQS-6 работает в режимах эхо- и шумопеленгования. Приёмоизлучающая акустическая антенна ГАС этого типа, расположенная в носовой части корпуса подводной лодки, выполнена в виде сферы диаметром около 4,5 м и состоит из 1245 пьезокерамическях элементов (рис. 1). При работе станции в режиме эхопеленгования антенна обеспечивает всенаправленное излучение акустической энергии в горизонтальной плоскости или остронаправленное излучение с электронным сканированием акустического луча по горизонту и углу места для обнаружения целей и выдачи точных данных целеуказания в систему ПЛУРО «Саброк». По данным зарубежной печати, в режиме шумопеленгования (при благоприятных гидрологических условиях) станция типа AN/BQS-6 обнаруживает подводные лодки на дальностях 55-220 км.

Рис. 1. Приёмоизлучаюшая акустическая антенна ГАС AN/BQS-6

При работе станция может использовать эффекты поверхностного и донного отражения акустических лучей.

Приёмная антенна ШПС AN/BQR-7 обеспечивает пеленгование подводных лодок. Она набрана из 156 гидрофонов, расположенных тремя параллельными рядами протяженностью около 15 м по каждому борту.

Антенны ГАС типа AN/BQS-6 и ШПС AN/BQR-7 занимают значительную часть объема первого отсека.

ГАС классификации целей AN/BQQ-3 предназначена для анализа низкочастотных составляющих шумов, создаваемых подводными лодками. Для классификации обнаруженных целей шумы, предварительно записанные на магнитную ленту, анализируются по характерным признакам их спектральных составляющих. По мнению американских специалистов, появление на вооружении ПЛА аппаратуры AN/BQQ-3 - значительный шаг на пути автоматизации процессов классификации целей.

Вычислитель-индикатор AN/BQA-3 обрабатывает данные обнаружения подводных целей (пеленг, дальность), поступающие от ГАС типа AN/BQS-6, рассчитывает курс, скорость хода, величину изменения расстояния и пеленга и выдает данные в ЭВМ прибора управления стрельбой Мк113 системы ПЛУРО «Саброк».

Станция ЗПС AN/BQA-2 с кодирующей аппаратурой, входящая в состав системы AN/BQQ-2, обеспечивает скрытую связь между подводными лодками на дальностях до 20 км.

Приемные антенны ШПС типа AN/BQG-2 разнесены по корпусу подводной лодки, что позволяет использовать метод фазового сдвига для определения элементов движения цели.

Как сообщает зарубежная печать, система AN/BQQ-2 постоянно модернизируется. Входящие в неё ГАС типа AN/BQS-6 в настоящее время заменяются станциями AN/BQS-11, -12 и -13, в которых широко используются твердотельные элементы. Эти станции более надежны в работе и удобны в эксплуатации. Подверглась модернизации и ШПС AN/BQR-7. К ней добавлено цифровое устройство управления многолучевой диаграммой направленности, которое, по мнению американских военно-морских специалистов, улучшает разрешающую способность и повышает дальность действия ШПС за счёт формирования более узкой приёмной диаграммы направленности. Иностранные специалисты полагают, что это устройство обеспечит обнаружение подводных лодок на дальностях около 160 км и позволит классифицировать неопознанные подводные лодки. Расположение акустических антенн станций системы AN/BQQ-2 на подводной лодке показано на рис. 2.


Рис. 2. Расположение акустических антенн станций системы АN/ВQQ-2 на подводной лодке: 1 - гидрофоны ГАС классификации целей AN/BQQ-3; 2 - антенна ГАС AN/BQS-6; 3 - антенна ШПС AN/BQR-7

В связи со строительством подводных лодок типа (скорость хода 40 узлов, глубина погружения 550 м) и системы в США создается новая комплексная гидроакустическая система AN/BQQ-5. По данным зарубежной печати, в неё войдут модернизированная ГАС AN/BQS-13 с устройством DNA и ГАС AN/BQS-14. Первая ГАС обладает увеличенной скоростью обзора подводного пространства, что позволит командиру подводном лодки оперативнее получать информацию об обнаруженных целях и принимать решение на использование оружия.

Устройство DNA включает ЭВМ предназначенную для формирования многолучевой диаграммы направленности, узкополосное устройство обработки сигналов и устройство, увеличивающее скорость обзора подводного пространства. Ожидается, что устройством DNA будут оснащены ГАС, ранее установленные на подводных лодках типов «Пермит» и «Стёрджен».

По сведениям иностранной прессы, в 1970 году в США для ПЛАРБ разработана новая комплексная гидроакустическая система (SSBN Unique Sonar System). Она включает буксируемую ШПС AN/BQR-15, ШПС AN/BQR-19, а также ГАС AN/BQS-4 с цифровым устройством для управления многолучевой диаграммой направленности. Буксируемая ШПС AN/BQR-15 может обнаруживать подводные лодкb под слоем температурного скачка в кормовом секторе обзора.

Для атомных торпедных подводных лодок в США создана также комплексная система STASS, в которую входит аппаратура сбора разведывательных данных AN/BQH-4.

В ВМС Франции на вооружении дизельных подводных лодок типа «Дафнэ» состоят ГАС DUUA-l, DUUA-2A и ШПС DUUX-2.

ГАС DUUA 1 (модификации А, В и С) фирмы «Алкатель» предназначена для обнаружения подводных лодок противника и выдачи данных целеуказания на дальностях до 6 км, а также для звукоподводной связи. Станция работает в диапазоне частот 2 - 40 кГц, длительность импульса 8,2 или 150 мс. Ее модифицированные варианты отличаются в основном составом комплектующих блоков.

ГАС DUUA-2A может устанавливаться на подводные лодки водоизмещением до 1200 т. В активном режиме (рабочая частота 8,4 кГц) станция обеспечивает обнаружение, определение координат целей (на дальностях до 24 км), звукоподводную связь и навигацию при плавании на больших глубинах. Станция DUUA-2A может излучать частотно-модулированные импульсы различной длительности (30, 300 или 500 мс), что является её характерной особенностью.

ШПС DUUX-2 имеет модификации А, В и С; станцией третьей модификации оснащены также подводные лодки ВМС . Приемная антенна ШПС DUUX-2 состоит из трёх групп гидрофонов, смонтированных по обводам корпуса подводной лодки. Это позволяет методом сравнения фаз сигналов, принятых гидрофонами разных групп (рабочие частоты 5, 7, 12 и 18 кГц), измерять дальность до обнаруженных целей и определять их местоположение на расстоянии до 30 км ±10% при точности пеленгования ±1,5°.

Французская ШПС фирмы «Томсон-CSF», предназначенная для обнаружения и определения местоположения подводных лодок и надводных кораблей, относится к числу перспективных. Она может использоваться совместно со станциями, работающими в активном и пассивном режимах, и с приборами управления торпедной стрельбой. В этой ШПС для обработки сигналов применено цифровое вычислительное устройство.

В малые подводные лодки типа «Тоти» оснащены комплексной гидроакустической системой IP-64. Её планируют установить на две новые подводные лодки, находящиеся в постройке. Эта система предназначена для обнаружения целей, определения их местоположения и выдачи данных для атаки. В неё входят ГАС с акустической антенной (смонтирована в носовой части корпуса подводной лодки) и ШПС. Поиск и обнаружение целей осуществляются главным образом шумопеленгаторной станцией, в которой сигналы обрабатываются корреляционным методом. После обнаружения в направлении цели излучается одиночный импульс, позволяющий измерить дальность до цели и относительную её скорость.

ШПС может также использоваться с акустическим дальномером MD-64, измеряющим в пассивном режиме дальности до обнаруженных источников звука. Для этого применяется метод сравнения времени задержки звуковых волн, принимаемых гремя группами гидрофонов. Каждый гидрофон имеет ряд элементов, сфазированных в горизонтальной плоскости. Дальномер MD-64 работает автоматически, после определения направления на источник шума аппаратура синхронизируется и непрерывно измеряет пеленг и дальность, отображаемые графически на записывающем устройстве.

Гидроакустические средства надводных кораблей

На кораблях ВМС стран НАТО, как об этом сообщает зарубежная печать, наибольшее распространение получили станции американского, английского, французского и канадского производства.

Корабли ВМС США (авианосцы типа «Америка» и , противолодочные авианосцы типа «Эссекс», крейсера УРО , «Олбани», «Галвестон», атомный крейсер УРО «Бейнбридж», крейсер УРО «Леги», эскадренные миноносцы УРО типов «Кунц» и «Чарлз Ф. Адамс», эскадренные миноносцы типа «Форрест Шерман») оснащены ГАС AN/SQS-23, используемой в системе ПЛУРО . Предполагалось оснастить этой станцией 190 кораблей. После модернизации в 1971 году станция получила обозначение AN/SQQ-23 PAIR. В ней применены микроэлектронные схемы, модульные конструкции, сигналы обрабатываются цифровыми методами. Ею планируется оснастить находящиеся в постройке фрегаты типа PF ВМС США. Размещение основных компонентов станции на эскадренном миноносце показано на рис. 3.


Рис. 3 Схема размещения компонентов гидроакустической станции AN/SQQ-23 PAIR на эскадренном миноносце: 1 - боевой информационный пост; 2 - отсек гидроакустического оборудования; 3 - акустическая антенна станции AN/SQS-23; 4 - гидрофонная решётка носового сектора наблюдения; 5 - гидрофонная решётка кормового сектора наблюдения; 6 - гидроакустическая рубка

Атомные крейсера УРО типа , «Тракстан», крейсера УРО типа «Белкнап», эскадренные миноносцы типа и корабли других типов ВМС США оснащены более совершенной ГАС AN/SQS-26 (модификации АХ, ВХ, СХ). Эта станция, принятая на вооружение в начале 70-годов, непрерывно совершенствуется. Её стоимость возросла уже на 79%. Работы по модернизации решено продолжать до 1977 года. Станция AN/SQS-26 обеспечивает стрельбу ПЛУР «Асрок», торпедами и бомбометание, при работе используются прямые каналы распространения акустической энергии, зоны конвергенции и эффект донного отраження. По данным зарубежной печати, дальность действия станции в активном режиме около 30 км, а при использовании зон конвергенции 55-60 км.

В акустической антенне ГАС AN/SQS-26, помещенной в специальный бульбообразный обтекатель под форштевнем корабля, 576 элементов. Считается, что такая конструкция позволяет увеличить дальность действия ГАС за счет снижения собственных помех, уменьшить сопротивление движению корабля и повысить скорость поиска целей.

Электронное оборудование станции AN/SQS-26 размещено в 37 шкафах и по общему весу в три раза превосходит вес оборудования станции AN/SQQ-23.

Наиболее современными станциями, состоящими на вооружении кораблей ВМС Великобритании, считаются ГАС MS26, 27 и 32, разработанные фирмой «Плесси».

ГАС MS26 создана для кораблей водоизмещением до 150 т, а ГАС MS27 - 750 т. Хотя расчётная дальность их действия 7 км, практическая дальность даже при благоприятных гидрологических условиях, как полагают, не превышает 4,5 км. В состав этих станций входят передатчик, пульт управления гидроакустика, доплеровский и секторный приемники и вспомогательные блоки. Передатчик с блоком питания весит 172 кг, акустическая антенна с обтекателем - 2130 кг.

Станция MS32 обеспечивает обнаружение, классификацию подводных целей и выдачу данных противолодочным системам оружия. Её акустическая антенна и электронное оборудование, в котором широко применяются твердотельные элементы, весят по 2000 кг.

В 60-х годах в США, Франции, Канаде, а несколько позже и в Великобритании стали проектировать буксируемые ГАС и ШПС с переменной глубиной погружения акустической антенны для обнаружения подводных лодок под слоем температурного скачка. В результате появились станции AN/SQS-35, -36 и -38, AN/SQR-13 и -14; (США), DUBV-43 (), AN/SQS-507 (), 199 () и другие. По мнению зарубежных специалистов, у этих ГАС низкий уровень шума и они обладают большими возможностями обнаружения подводных целей. В США разрабатываются перспективные корабельные буксируемые системы TASS и TACTLASS.

В станциях AN/SQS-35 и -36 используются миниатюрные электровакуумные приборы, а в AN/SQS-38 - твердотельные элементы. AN/SQS-36 рассчитана для обнаружения подводных лодок в глубоководных районах, a AN/SQS-38 в мелководных. Внешний вид буксируемого корпуса станции AN/SQS-35V показан на рис. 4.

Рис. 4 Внешний вид буксируемого корпуса ГАС AN/SQS-35V (вид с кормы)

Станция AN/SQR-13 принята на вооружение кораблей ВМС США в 1971 году. Ее антенна имеет три гидрофона, позволяющие в пассивном режиме определять дальность до обнаруженной цели и пеленг на неё.

В 1972 году разработана буксируемая ШПС AN/SQR-14A ITASS (Interim Towed Array Sonar System). В настоящее время она испытывается в морских условиях.

ГАС DUBV-43 фирмы «Алкатель», состоящая на вооружении французских эскадренных миноносцев, является прототипом станции DUBV-24C. Её акустическая антенна буксируется кораблем на удалении до 250 м. от кормы на скорости хода 4 - 24 узла, обнаруживая цели на расстоянии до 25 км. При этом глубина буксировки антенны может изменяться в пределах 10 - 200 м. Антенна (диаметр 1 м, высота 1,2 м) размещена в буксируемом корпусе (длина 5,5 м, ширина 1,7 м, вес 7,75 т в погруженном положении). Конструкция антенны обеспечивает излучение сигналов мощностью до 96 кВт на больших глубинах. DUBV-43 может использоваться самостоятельно и совместно с ГАС IXJBV-23, имеющей подкильную антенну для обнаружения целей и выдачи необходимых данных для их атаки.

Канадская буксируемая ГАС AN/SQS-507 разработана для экспериментальных противолодочных катеров на подводных крыльях . Она предназначена для обнаружения и слежения за целями на больших скоростях хода (до 60 узлов) и обеспечения торпедной атаки. Работы по её созданию были начаты в 1963 году, а в 1968 году фирма-разработчик передала оборудование станции своим ВМС.

Английская ГАС 199 состоит на вооружении противолодочных кораблей ВМС Великобритании и Австралии.

Многие противолодочные вертолёты, преимущественно используемые с малых кораблей, оснащены опускаемыми гидроакустическими станциями. Некоторые вертолёты, наряду с ОГАС, имеют также и радиогидроакустические системы. Современные достижения в области технологии позволяют создать современные гидроакустические станции, пригодные для установки на вертолёты всех типов, независимо от их полётного веса (вес первых ОГАС достигал 500 кг). Назначение ОГАС – прослушивание водной среды при поиске ПЛ. Часть аппаратуры станции размещается на борту вертолёта, а другая – в опускном устройстве, заглубляемом с вертолёта в режиме висения.

Поиск ПЛ вертолёты производят путём последовательного обследования водной среды из точек висения, расположенных в определённом порядке. Обычно вертолёт зависает на высоте 10-15 м над водной поверхностью и заглубляет опускное устройство (акустическую антенну) на оптимальную глубину (до 450 м). Если объект поиска не обнаружен, то производится перелёт в очередную точку зависания.

Вертолётные гидроакустические станции за рубежом производят в основном три фирмы: Бендикс (США), Плесси (Англия), и Синтра-Алькатель (ФРГ). При их создании учитывался опыт конструирования и эксплуатации корабельных гидроакустических станций, использовались также идеи, реализованные в конструкции буёв.

Большинство современных ОГАС работают как в пассивном, так и в активном режимах, именуемых соответственно режимами шумопеленгования (ШП) и эхо-пеленгования (ЭП). Однако имеющийся в ОГАС режим ШП из-за малой шумности современных ПЛ и необходимости сложного оборудования для обработки и выделения полезного сигнала на фоне помех, применяется ограниченно, и, хотя это и сопряжено с рядом неудобств, предпочтение отдается режиму ЭП. При использовании станции в этом режиме после заглубления подъёмно-опускного устройства ОГАС включается в режим излучения – формируется довольно мощная акустическая посылка определённой формы и длительности (от 3 до 200 мс), в зависимости от типа ОГАС, режима работы, условий. Дальность до цели обычно не превышает 5000-6000 м в зависимости от условий поиска и определяется по времени от излучения импульса до приёма отражённого сигнала. Однако с появлением современных малошумящих ПЛ эти дальности существенно снизились. Можно предполагать, что с переводом ОГАС на низкие частоты, дальности обнаружения ПЛ в режиме ШП возрастут.

По принятому методу обследования пространства в горизонтальной плоскости различают ОГАС шагового поиска и кругового обзора. При шаговом поиске акустический сигнал излучается передающей антенной в определённом секторе. Антенна остается в этом положении в течение времени, необходимого для прохождения акустической волной расстояния, равного двойной дальности действия ОГАС. В течение этого времени включено приёмное устройство. Если контакт не установлен, то антенна (диаграмма) автоматически перемещается относительно вертикальной оси на ширину главного максимума характеристики направленности, и производится новая посылка. И так, шаг за шагом, последовательно просматривается весь горизонт (сектор). Очевидно, что с применением подобного метода, особенно при большой дальности станции и диаграмме направленности шириной 25-30 град; на круговое обследование потребуется очень много времени. Водная среда обследуется последовательно по секторам, а не весь горизонт одновременно, Поэтому станции шагового поиска применяются ограниченно, причём для сокращения времени обследования ширину обследуемого сектора увеличили до 60-90 град.

В ОГАС с круговым обзором акустическая посылка излучается по всему горизонту одновременно, после чего осуществляется круговой приём эхо-сигналов. В этом случае наблюдаются все объекты, находящиеся в пределах дальности ОГАС.

На противолодочных (многоцелевых) вертолётах военно-морских сил США и НАТО находятся ОГАС американского производства AN/AQS-13 (модификации А, В, С, D, Е, F, AN/AQS-18); английские – тип 195, Hisos-1; французские HS-12, DUAV-4 с последующими модификациями и другие. Большинство этих.ОГАС снабжены сложными системами датчиков со схемами формирования лучей и позволяют за одну- две посылки обнаружить ПЛ, определить её пеленг, дальность и скорость движения.

Опускаемая гидроакустическая станция AN/AQS-13A поступила на замену ОГАС AN/AQS-10, выпускавшейся с 1955 г. Она имеет несколько модификаций на основе базовой модели. В одной из последних её модификациях AN/AQS-13F используются частоты 9,5-10,5 кГц. При поиске ПЛ станция может работать в режиме ШП и ЭП, а также в режиме звукоподводной связи телефоном или телеграфом (только станция AN/AQS-13A).

Начиная с модификации AN/AQS-13B, станции для улучшения условий выделения полезного сигнала и устранения ложных целей с экрана индикатора могут дополняться адаптивным процессором APS (Adaptive Processor Sonar). С помощью APS повышается точность определения скорости цели, усиливается принимаемый сигнал. Большая энергия, излучаемая длинными импульсами в режиме APS, в сочетании с узкополосным анализом улучшает условия выделения полезного сигнала, особенно в условиях помех.

В этом режиме на индикаторе кругового обзора, кроме отображения пеленга и дальности, воспроизводится также значение до- плеровской радиальной скорости ПЛ.

Акустическая система станции размещается в опускном устройстве и состоит из трубчатых преобразователей – одного излучающего и восьми приёмных, расположенных над ним. Ширина диаграммы направленности каждого элемента составляет 45 град. В корпусе опускного устройства размещены также датчик температуры батитермографа.

Спуск и подъём опускного устройства осуществляется на 30 жильном кабель-тросе длиной 150 м с помощью лебёдки, барабан которой приводится во вращение гидромоторами. На вертолёте размещается также ряд дополнительных обеспечивающих применение станции устройств: указатель длины выпущенной части кабель-троса, датчики его вертикальности. Кроме того, в комплекте оборудования вертолёта имеется доплеровский измеритель путевой скорости и угла сноса, по сигналам которого вертолёт удерживается в точке висения (вручную или автоматически). Причём чувствительность последнего устройства очень велика. Сигнал смещения выдается при скорости вертолёта 400 м/ч.

Опускаемая гидроакустическая станция AN/AQS-18 также кругового обзора, и наряду с ОГАС AN/AQS-13F, для восьмидесятых годов являлась наиболее современной. Она работает в диапазоне частот 9,2-10,8 кГц. В конструкции этих станций просматриваются основные тенденции развития подобного типа технических устройств: уменьшение массогабаритных характеристик, увеличение глубины опускания приёмно-излучающего устройства и дальности обнаружения ПЛ.

В качестве индикаторов в комплекте станции AN/AQS-18 используется многоцелевой самописец и электронно-лучевая трубка с шестью масштабами дальности, максимальный из которых рассчитан на 18 км. На электронно-лучевой трубке кроме дальности показывается также пеленг на цель, величина его изменения, характер объекта, величина изменения расстояния. Имеется двухканальная слуховая система.

Станции AN/AQS-18, в том числе и поставлявшиеся в другие страны, комплектовались опускаемыми устройствами, существенно отличавшимися от ранее применявшихся. Кроме излучающих и приёмных элементов в опускаемое устройство поместили компас, генераторное устройство, усилитель мощности, датчик температуры воды, свинцово-цинковую аккумуляторную батарею для питания электронных схем и накопления энергии в генераторе.


Вертолёт SH-60B


Вертолёт SH-60B в зоне поиска. С правого борта виден магнитометр.


Противолодочный вертолёт Каман SH-2D "Си Спрайт" с буксируемым магнитометром.


Верхняя часть опускного устройства снабжена кольцевой акустической наделкой, которая обеспечивает стабилизацию процессов режима опускания и подъёма с большой вертикальной скоростью (подъём – 8,2 м/с, опускание – 5,2 м/с).

Уменьшение веса и габаритов отдельных элементов ОГАС, а также размещение подзаряжаемого постоянным током источника питания электроэнергией в опускаемом устройстве позволили вместо тяжелого кабеля использовать одножильный коаксиальный кабель толщиной всего 5 мм (обычный кабель имел диаметр. 12,5 мм и состоял из 30 проводов) и увеличить его длину до 460 м, причем время опускания на эту глубину такое же, как у станции AN/AQS-13, акустическое устройство которой заглубляется на 150 м.

На базе американской AN/AQS-13 в Великобритании создана станция типа 195, которая работает в режиме панорамного поиска в четырех секторах (шириной по 90 град, каждый) способом пульсирующей развёртки. Она входила в состав ППС вертолёта «Си Кинг» Великобритании.

Другая разработанная в Великобритании ОГАС – HISOS-1 устанавливается на вертолётах «Линкс». Информация, получаемая с её помощью, может обрабатываться бортовой ЦВМ AQS-902. Станция комплектуется гидроакустической широкополосной антенной решеткой, обеспечивающей более высокую точность определения пеленга цели и дальность обнаружения по сравнению со станцией типа 195. Антенна станции может заглубляться до 300 м. Имеются сведения, что система обработки данных этой станции может обрабатывать также информацию от буёв.

Во Франции вертолёты вооружались гидроакустической станцией DUAV-4, которая работала в режимах ШП и ЭП и обеспечивала также измерение радиальной скорости ПЛ по доплеровскому сдвигу частот. Приемно-излучающее устройство станции снабжалось малошумным приводом.

Более совершенной является ОГАС HS-12. В режиме шумопеленгования её антенна излучает импульсы акустической энергии прямоугольной или синусоидальной формы с частотной и гиперболической модуляцией. Повышение точности пеленгования обеспечивается за счёт использования цифровых методов формирования и управления диаграммой направленности.

В состав бортового оборудования станции HS-12 входят электронная аппаратура, схемы управления, специализированный процессор, индикаторы, аппаратура встроенного контроля, а также лебедка с гидроприводом. Радиоэлектронные блоки, размещенные в опускном устройстве, управляют излучением, формируют диаграмму направленности, осуществляют фильтрацию сигналов, а также усиление, квантование и определение максимума принимаемого сигнала.

Гидроакустическая антенна станции состоит из 12 керамических преобразователей. В дополнение к ним оператор может применять три полулуча. Система обеспечивает также панорамный пассивный поиск в полосе частот шириной 1 кгц в диапазоне от 7 до 20 кгц. Когерентная обработка сигналов и классификация контакта производится по 12 каналам. В опускном устройстве размещён также датчик температуры батитермографа. По мере погружения опускаемого устройства данные о температуре воды обрабатываются и поступают в запоминающее устройство.

Для уменьшения размеров кабеля в системе применена цифровая техника и мультиплексоры, что позволило погружать при- емоизлучающую систему на глубину до 300 м. На лёгких вертолётах может устанавливаться кабель длиной 170 м с более строгими ограничениями по весу.

Станция HS-12 устанавливалась в 80-х годах на большинстве средних противолодочных вертолётах, таких, как «Линкс».