Биотопливо из водорослей. Биотопливо из леса

Использование биотоплива, например этанола (этилового спирта) или дизельного топлива (биодизеля), полученного из специально выращенных растений, обычно рассматривают как важный шаг к сокращению выбросов углекислого газа (СО 2) в атмосферу. Конечно, при сжигании биотоплива углекислый газ попадает в атмосферу совершенно так же, как и при сжигании ископаемого топлива (нефти, угля, газа). Разница в том, что образование растительной массы, из которой было получено биотопливо, шло за счет фотосинтеза, то есть процесса, связанного с потреблением СО 2 . Соответственно, использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО 2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Однако стремительно расширяющееся производство биотоплива во многих местах (прежде всего в тропиках) ведет к уничтожению природных экосистем и утере биологического разнообразия.

Двигатели, работающие на биотопливе, используют энергию солнечного света, запасенную растениями. Энергия ископаемого топлива — это на самом деле тоже когда-то давно (десятки и сотни миллионов лет тому назад) связанная энергия солнечного света, а выделяющийся при сжигании ископаемого топлива углекислый газ когда-то был изъят из атмосферы (и вод океана) растениями и цианобактериями. Казалось бы, биотопливо ничем не отличается от обычного ископаемого топлива. Но разница есть, и определяется она временно й задержкой, лагом между связыванием СО 2 в ходе фотосинтеза и выделением его в процессе сжигания углеродсодержащих веществ. Если этот лаг очень большой (как в случае использования горючих ископаемых), то состав атмосферы мог за это время существенно измениться. Кроме того, если связывание углекислого газа происходило в течение очень длительного времени, то высвобождение происходит очень быстро. В случае же использования биотоплива временно й лаг совсем небольшой: месяцы, годы, для древесных растений — десятилетия. Поэтому биотопливо и называют часто «углерод-нейтральным».

При всех плюсах использования биотоплива быстрое увеличение его производства чревато серьезными опасностями для сохранения дикой природы, особенно в тропиках. В последнем номере журнала Conservation Biology появилась обзорная статья (пока еще только в предварительной, онлайновой версии), посвященная вредным последствиям использования биотоплива. Ее авторы, Марта Грум (Martha A. Groom), работающая в рамках Междисциплинарной программы наук и искусств Вашингтонского университета в Ботелле (США), и ее коллеги Элизабет Грэй и Патрисия Таунсенд, проанализировав большой массив литературы, предложили ряд рекомендаций по тому, как сочетать получение биотоплива с минимизацией отрицательного воздействия на окружающую среду, с сохранением биоразнообразия окружающих природных экосистем.

Так, по мнению Грум и ее коллег, вряд ли заслуживает одобрения принятая во многих странах, и прежде всего в США, практика использования кукурузы как сырья для получения этанола. Культивирование кукурузы само по себе требует большого количества воды, удобрений и пестицидов. В результате, если учесть все затраты на выращивание кукурузы и производства из нее этанола (они ведь тоже связаны с потреблением энергии, со сжиганием топлива), то окажется, что в сумме количество СО 2 , выделяющегося при изготовлении и использования такого биотоплива, почти такое же, как при использовании традиционного ископаемого топлива! Для этанола из кукурузы коэффициент, оценивающий выделение парниковых газов на определенный энергетический выход (в кг СО 2 на мегаджоуль,10 6 джоулей, полученной энергии), равен 81-85. Для сравнения, соответствующий показатель для бензина (из ископаемого топлива) составляет 94, а для обычного дизельного топлива — 83. При использовании сахарного тростника результат уже существенно лучше — 4-12 кг СО 2 /МДж.

Но настоящий положительный скачок наблюдается при переходе к использованию многолетних трав, например одного из видов дикого проса — так называемого проса прутьевидного (Panicum virgatum ), обычного растения высокотравных прерий Северной Америки. Благодаря тому, что значительная часть связанного углерода запасается многолетними травами в их подземных органах, а также накапливается в органическом веществе почвы, территории, занятые этими высокими (порой выше человеческого роста) травами, функционируют как места связывания («стока») атмосферного СО 2 . Показатель эмиссии парниковых газов при получении биотоплива из проса характеризуется отрицательной величиной: -24 кг СО 2 /МДж (то есть СО 2 становится меньше в атмосфере).

Еще лучше удерживает углерод многовидовой растительный покров прерий. Показатель эмиссии парниковых газов в этом случае также отрицательный: -88 кг СО 2 /МДж. Правда, скорость прироста (продуктивность) таких многолетних трав относительно низкая. Поэтому и количество топлива (выраженное в количестве бензина в литрах), которое может быть получено с естественной прерии, составляет всего около 940 л/га. Для проса эта величина достигает уже 2750-5000, для кукурузы — 1135-1900, а для сахарного тростника — 5300-6500 л/га.

Эффективным оказывается и использование быстро растущих деревьев, например разных тополей и ив. В целом ряде районов земного шара, прежде всего в тропиках, широкое внедрение культур, используемых для получения биотоплива, связано с вырубкой лесов. В Индонезии и в Малайзии огромные территории, еще недавно занятые дождевыми тропическими лесами — экосистемами, характеризующимися не только очень высокой первичной продукцией (cм. также: Primary production), но и максимальным видовым разнообразием растений и животных, — превращены теперь в плантации масличной пальмы и других растений, пригодных в качестве сырья для биотоплива. В Бразилии плантации сахарного тростника замещают интереснейшие, также характеризующиеся высоким видовым разнообразием, болотные экосистемы. Особенно интенсивно этот процесс идет в последние годы после подписания соглашения между Бразилией и США о крупных поставках этанола.

Очевидно, что замещая ископаемое топливо и снижая таким образом рост СО 2 в атмосфере, биотопливо на самом деле может угрожать многим природным экосистемам, прежде всего тропическим. Дело, конечно, не в самом биотопливе, а в неразумной, «недружественной по отношению к природе» политике его производства, в уничтожении богатых видами природных экосистем и заменой их крайне упрощенными экосистемами сельскохозяйственных угодий. Большие надежды авторы возлагают на использование в качестве сырья для биотоплива массы микроскопических планктонных водорослей, которые можно выращивать в прудах (порой даже с солоноватой водой) или в специальных биореакторах. Выход полезной продукции на единицу площади при этом значительно выше, чем в случае наземной растительности.

В заключение статьи авторы формулируют ряд рекомендаций, которые надо учитывать, чтобы минимизировать вред, наносимый природным экосистемам при получении биотоплива. В частности, они настаивают на том, чтобы в каждом конкретном случае рассчитывались затраты и выгоды на всех этапах производства и использования того или иного биотоплива в том или ином конкретном месте. Следует также минимизировать площадь, занятую культурами, выращиваемыми для получения биотоплива, стараться использовать для этого брошенные земли, отвалы производства, места свалок и т. п. Предпочтение должно отдаваться многолетним местным растениям. Надо опасаться использования видов, которые могут стать инвазийными (см.: Invasive species), то есть выйдут из-под контроля и станут массовыми в природных сообществах.

В любом случае, необходимо оценить тот риск, который возникает для природных экосистем при культивировании растений, используемых в качестве сырья для биотоплива.

кормовой злак

Альтернативные описания

Травянистое растение семейства злаков, зёрна которого обычно идут на корм лошадям, а также на крупу

Злак, сельскохозяйственная культура

. "Бензин" для лошади

В коня корм

Деликатес в конюшне

Зерна на корм коню

Зерна на корм лошадям

Зерно на корм лошади

Зерно, которое кушают лошади

Зерновая культура

Злак в геркулесовой каше

Злак в корм коням

Злак в лошадиной торбе

Злак в популярном печеньи

Злак для толокна и лошади

Злак с "лошадиной фамилией"

Злаковая культура

Из какого злака готовят геркулесовую кашу

Из чего можно получить солод

Конский деликатес

Корень лошадиной фамилии (лит.)

Корм для жеребца

Корм для каурки

Корм для лошади

Корм для савраски

Лекарственное растение

Лошадиная крупа

Лошадиный деликатес

Лучший корм для лошади

Любимый лошальми злак

М. зернет(ь?) сиб. хлебное однолетнее растенье Аvena sativa, с соломенным стеблем, с бронью вместо колоса. Не лошадь везет, овес едет. Не гладь лошадь рукой, гладь овсом (мешком). Сеном лошадь требушину набивает, а от овса рубашка по телу закладывается. Не спеши (не стращай) кнутом, спеши овсом. Ныне овсы хорошо стоят, овсяные поля. Не воз едет, овес везет. Овес любит, хоть в воду, да впору, о посеве. Сей овес, когда босая нога на пашне не зябнет. Когда береза станет распускаться, сей овес, симб. Овес и сквозь лапоть прорастет. Овес толки до кисельного запаху. На Пахомия поздний поспел овса, пшеницы. Пахомия теплого, Пахома бокогрея, мая. На кургане варгане стоит курочка с сергами? (овес). Овес, пск. твер. ячмень на глазу; мальга, моль, мелкая рыбка. Живой овес, растенье А.fatura. Заячий овес, pubescens, лесной ковыль, овсюк. Овсяная солома. Овсяная каша сама себя хвалит, т. е. так хороша. Овсяным киселем подавился. Не подбивай клин под овсяный блин: поджарится, сам свалится. Овсяная лошадь, плотная, сбитая, выкормленная овсом; противопол. соломенная. Овсяный корень, растен. Тragopogon porrifolium. Овсяная голка, растенье Holcus avenaceus. Овсянк, хлеб, испеченный из овсяной муки; порода медведей наших, средняя между стервятником и муравейником; он опустошает овсы и лесной малинник. Не ломайся овсяник, не быть киселем. Поешь овсяничка наместо пряничка. Овсяник, сарай для овсяной соломы, на корм. Овсяница, овсяная солома. Овсянка ж. Пташка Emberiza hortulana, зеленоватый хребтик, желтоватый зобок. Овсянка запела веснянку: покинь санки, возьми воз! Овсянке на радость, кукушка яичко снесла (т. е. в гнездо овсянки). Овсяная кашица и овсяная непросеянная мука, обваренная кипятком, овсяная болтушка, коею кормят борзых и гончих. Овсянка, а южн. ольшанка, рыба Аspius ausianka. Овсец. Когда в поле ехать, тогда и овсянку заваривать. Когда коней седлать, тогда овсянку заваривать. Его собаки овсянку ели, а наши на них через тын глядели. Овсяница ж. растен. Festuca, занозка луговая, занозница. Овсяница. Наталии-Овсяницы, пожинки, обжинки яровые, празднуемые авг., в день Адриана и Наталии. Овсяница, овсянка, кашица, похлебка из овсяных круп, твер. Овсянячек, пирог из овсяной муки: растенье овсяница. Овсинка ж. овсяное семечко, одно зерно овса. Овсино зернышко попало волку в горлышко. Овсинина, пск. твер. овес на глазу, ячмень на веке. Овсец м. рожь овсец, по народн. поверью, рожь, выродившаяся из овса: овес скашивают в траве

Основной компонент мюслей

Парнокопытный деликатес

Продукт для каши Берримора

Сырье для каши Генри Баскервилю

Яровой злак

Яровой злак, зерна которого обычно идут на корм животным, на крупу

Яровой злак, корм лошади

Злак, сельскохозяйственная культура

. «... нынче дорог»

Найдите в «повести» еду

Из какого злака готовят геркулесовую кашу?

Из какого злака делают толокно?

Из чего можно получить солод?

. «на лошадь не плеть покупают, а...» (посл.)

. «как во поле на кургане стоят девушки с серьгами» (загадка)

Злак с «лошадиной фамилией»

. «бензин» для лошадки

Лошадкин «бензин»

. «бензин» для лошади

. «на коня не плеть покупают, а...»

Злак для «геркулеса»

Лошадиный харч

Яровое злаковое растение

Любимый лошадьми злак

Сырьё для каши Генри Баскервилю

Л.В. Назаренко

Одной из особенностей развития современного мира является повышенное внимание мирового сообщества к проблемам рациональности и эффективности использования энергоресурсов, внедрения технологий энергосбережения и поиска возобновляемых источников энергии.

Сегодня развитие возобновляемой энергетики в мире приняло ускоренный характер, что связано с нарастающими многофакторными кризисными явлениями глобального характера. С одной стороны, отмечается ограниченность геологических запасов основных видов топливных ресурсов - нефти и газа, что приводит к неизбежному росту цен на них . С другой стороны, очевиден рост негативного влияния экологических факторов, вызванных последствиями жизнедеятельности человека.

Таблица 1

Извлекаемые запасы ископаемых первичных энергоносителей и ежегодный прирост биомассы (в млрд т)

Основной экологический ущерб, связанный с глобальным изменением климата Земли, - парниковым эффектом, наносят, главным образом, добыча, переработка и сжигание ископаемых видов топлива - угля, нефти и газа. Парниковый эффект составляет до 75 % доли антропогенного экологического ущерба. В этой связи удовлетворение нарастающих потребностей населения мира в топливе, электрической и тепловой энергии одновременно с обеспечением экологической безопасности обуславливает необходимость развития возобновляемой энергетики, ведь нефть - не единственное сырье для получения высокооктановой органики для двигателей.

Биотопливо занимает особое место в структуре возобновляемых источников энергии. Будучи одним из немногих видов альтернативного топлива в транспортном секторе, биотопливо рассматривается в качестве важного ресурса при выборе источников энергии и обеспечения энергетической безопасности, развития сельского хозяйства и сельских районов, а также для смягчения последствий изменения климата путем сокращения выбросов парниковых газов .

В нашей предыдущей публикации были проанализированы различные виды биотоплива . Условно биомассу, как сырье для производства биотоплива, можно подразделить на три поколения . В настоящий момент различают следующие поколения биотоплива (см. рис. 1):

пищевые масло- и сахаросодержащие наземные растения;

непищевые и целлюлозосодержащие растения;

непищевые водные растения, т. е. водоросли.

Рис. 1. Упрощенная классификация поколений биотоплива

Биотопливо первого поколения изготавливают из сахара, крахмала, растительного масла и животного жира, используя традиционные технологии. Основными источниками сырья являются семена или зерно. Например, из семян рапса извлекают растительное масло, которое затем может быть использовано в биодизеле. Из пшеницы получают крахмал, после его сбраживания - биоэтанол.

Вырубка лесов, отрицательное воздействие на традиционное сельское хозяйство, дисбаланс использования сельскохозяйственных земель в сторону технических культур и угроза продовольственной безопасности - вот некоторые из проблем, с которыми сталкивается человечество при производстве биотоплива. Основной проблемой в производстве топлива из биомассы является продовольственная безопасность, поскольку биотопливо первого поколения производится из сельскохозяйственных культур, входящих в пищевую цепочку людей и животных (кукуруза, соя, масличная пальма, рапс, сахарный тростник, пшеница, рожь). Общественность уже спохватилась, что значительные площади, где производилось продовольствие, коммерчески ориентированные земледельцы отдали под технические культуры. Поскольку население Земли растет и требуется все больше пищи, то использование этих площадей для производства биотоплива уменьшает количество доступных продуктов питания и увеличивает их себестоимость.

Биотопливо второго поколения производится из непищевого сырья. Источниками сырья являются лигноцеллюлозные соединения, остающиеся после того, как пригодные для использования в пищевой промышленности части растительного сырья удаляются. Для этой цели также могут быть использованы быстрорастущие деревья и травы (тополь, ива, мискантус, ятрофа и другие) . Их иначе называют энергетическими лесами или плантациями. Испытано около 20 различных видов растений - древесных, кустарниковых и травянистых.

Преимущество такого биотоплива заключается в том, что растения, из которых оно получено, не конкурируют с продовольственными культурами за землю. Они могут произрастать на склонах, холмах, в оврагах, а также на непродуктивных и вырождающихся землях, иногда даже с перспективой восстановления этих земель. Для их выращивания можно использовать минимальное количество воды, удобрений, пестицидов и техники. Каждые 4-7 лет деревья срезают, их годовой урожай может доходить до 7 тонн на гектар. В междурядьях можно дополнительно высаживать сельскохозяйственные культуры. Собранная биомасса используется для производства тепловой и электрической энергии, а также может служить в качестве сырья для производства жидкого биотоплива.

Энергетические плантации можно подразделить на несколько видов: плантации деревьев быстрого роста (эвкалипт, ива, тополь, осина, ольха, роза многоцветная); двудольные растения (артишок, топинамбур, сида); многолетние злаки (мискантус гигантский); однолетние злаки (сорго суданское, тростник обыкновенный).

В таких странах, как Италия, Германия, Аргентина, Польша, на сегодняшний день широко практикуется создание специальных плантаций быстрорастущих пород тополя и ивы (тополь черный - Populus nigra, ива ломкая - Salix fragilis, ива корзиночная - Salix viminalis). Ива приобрела в качестве биотоплива популярность и в скандинавских странах. Ее собирают каждые 3-4 года. В Северной Индии посадки быстрорастущего тополя и эвкалипта занимают примерно от 50 до 60 тысяч гектар. В Германии производительность энергетических лесов достигает 20 миллионов кубометров древесины в год.

В России пока энергетические плантации развиты слабо, в основном используются быстрорастущие деревья, такие как тополь или осина. К примеру, в Ленинградской области начаты работы по закладке плантаций осины на неиспользуемых сельскохозяйственных землях в Бокситогорском районе.

«Зеленое топливо» перспективно как ценный возобновляемый источник энергии. Так, например, в г. Зиммеринге (Австрия) находится крупнейшая в Европе электростанция, использующая древесную биомассу. Ее мощность составляет 66 МВт, а потребляет она ежегодно 190 тысяч тонн биомассы, собираемой в радиусе 100 км.

Мискантус или мискант (серебряная трава, слоновья трава, Miscanthus giganteus) - бамбукоподобная трава, которую уже несколько лет выращивают в Европе и Северной Америке. Она морозо- и засухоустойчивая. Растение вырастает высотой до 4 м и более, урожай ее можно собирать в течение 30 лет, не пересеивая поля. Мискантус может произрастать на бедной почве, практически не требует удобрений и хорошо растет во влажных условиях умеренного климата на всей территории США, Европы и Азии. При этом мискантус не истощает землю. Более того, из мискантуса можно добыть большое количество биомассы при весьма небольшой посевной площади, что выгодно отличает это растение от других культур. Урожайность мискантуса составляет до 10-12 тонн на гектар, что примерно эквивалентно 36 баррелям нефти. Выведены гибриды мискантуса с урожайностью до 60 тонн с гектара. Специалисты утверждают, что если засадить 10 % полей Европы мисканту- сом, то можно будет дополнительно выработать до 9 % электроэнергии.

Ятрофа ядовитая (джатрофа, Jatropha curcas L.) относится к семейству молочаевых. Известна, как многолетний древовидный сорняк, растущий на бедных сухих почвах, размножается черенками и легко распространяется с помощью семян. Встречается по всей планете, но особенно хорошо растет в странах с тропическим и субтропическим климатом. Содержание питательных веществ в почве не является главным фактором, влияющим на продуктивность ятрофы. Этот кустарник может расти практически на любой почве, даже на заброшенных и неиспользуемых землях. Плантации ятрофы имеются в Индии, Китае, Бирме, Никарагуа, во многих африканских странах, на Филиппинах и в Бразилии. Семена ятрофы ядовиты для человека и животных, но в них содержится до 40 % различных масел. Ятрофа имеет высокий выход масла из семян в сравнении с основными биодизельными культурами - соей и рапсом. С гектара посевов сои получают почти 400 кг масла для биодизеля, из рапса - 1 т, из ятрофы - 3 т. Европейские селекционеры работают над выведением новых высокомасличных, скороспелых и морозоустойчивых гибридов ятрофы ядовитой.

Камелина (рыжик посевной, рыжей, Camelina sativa) - масличная однолетняя трава. Род рыжик объединяет 10 видов, произрастающих в Европе и Азии в зонах прохладного климата степной и лесной областей. Может расти на полях, залежах, вдоль дорог. Посевной рыжик произошел от сорных форм, которые в диком виде в России встречаются повсеместно. Камелину можно сеять тогда, когда почва отдыхает от пшеницы и других зерновых в рамках севооборота. Выход масла у рыжика с 1 га составляет 490 кг (583 л). В семенах содержится 33-42 % масла, 25-30 % белков, витамин Е.

Таким образом, биотопливо второго поколения будет постепенно замещать биотопливо первого поколения, что связано с его большей экологичностью, производительностью, а также с тем, что оно вырабатывается из непищевого сырья. Россия, имеющая огромные площади земель, не пригодные для сельского хозяйства, может легко задействовать их для посадок энергетических растений с целью получения биомассы для биотоплива.

К сожалению, экономические, социальные и этические аспекты сдерживают развитие производства первых двух поколений биотоплива. Чем острее эти проблемы, тем больший интерес приобретает развитие третьего поколения биотоплива. Эффективной возобновляемой биомассой, для которой не нужны пахотные земли и пресная вода, являются водоросли. Это простые организмы, приспособленные к росту даже в загрязненной или соленой воде. Определяющими факторами для накопления биомассы водорослями являются:

интенсивность солнечной радиации;

температура воды;

наличие биогенных элементов;

концентрация углекислоты.

Водоросли преобразуют солнечную энергию и углекислый газ в дешевое и высокопродуктивное сырье для получения продуктов питания, биотоплива, кормов для животных и высокоценных, биологически активных веществ. То есть эти организмы обладают эффективным аппаратом биоконверсии солнечной энергии и являются ее природными биоаккумуляторами. Продуктивность микроводорослей по биомассе превышает продуктивность наземных растений . Максимальные реальные величины прироста биомассы водорослей при интенсивности солнечной радиации 5623-7349 МДж на м2 в год (180-235 Вт/м2) составляют 38-47 г сухой биомассы с квадратного метра в сутки .

Водоросли включают в себя множество видов как одноклеточных, так и многоклеточных организмов. Они состоят из белков, углеводов, жиров и нуклеиновых кислот. Процентное содержание этих веществ зависит от вида водоросли. Некоторые штаммы водорослей идеально подходят для производства биотоплива благодаря высокому содержанию в них масла . Микроводоросли по потенциальному энергетическому выходу в 8-25 раз превосходят пальмовое масло и в 40-120 раз - рапсовое, что позволяет относить их к типичным представителям растительных масленичных культур. Существуют отдельные виды этих растений, содержащие до 40 % жирных кислот. Водоросли вида Botryococcus braunii способны до 61 % своей биомассы переводить в масло. Это масло может быть извлечено из водорослей и переработано в биодизель. Биотопливо, получаемое из водорослей, не содержит серы, нетоксично и хорошо поддается биоразложению. Преимущество получения биодизельного топлива из водорослей состоит в их высокой скорости роста и, следовательно, в высоком выходе биомассы на 1 га площади. Накопление жиров в водорослях при этом обычно происходит в условиях дефицита питательных веществ.

Десять преимуществ водорослей :

водоросли представляют собой непищевую биомассу, использование которой для производства топлива не представляет угрозы продовольственной безопасности;

водоросли растут в 20-30 раз быстрее наземных растений (некоторые виды могут удваивать свою массу несколько раз в сутки);

они производят в 15-100 раз больше масла с гектара, чем альтернативные наземные культуры - рапс, масличная пальма, соя или ятрофа;

они не имеют жесткой оболочки и практически лигнина, что технологически делает их переработку в жидкие виды топлива более простой и эффективной, чем переработка биомассы из любого наземного сырья;

производство и использование водорослей в качестве биотоплива не требует изменения российского законодательства, как в случае с этанолом;

водоросли растут как в пресной, так и в соленой воде, в том числе и в промышленных стоках, где используются для очистки;

водоросли можно выращивать промышленным способом в биореакторах или фотобиореакторах, освещаемых искусственными источниками света, либо в открытых резервуарах на некультивируемых почвах, включая пустыни;

фотобиореакторы встраиваются в технологические линии уже существующих промышленных предприятий (ТЭЦ, нефтехимические производства, цементные заводы);

водоросли уменьшают эмиссию углекислого газа (поглощают до 90 % С°2);

водоросли также являются источниками масел, протеинов, углеводородов.

Особый интерес вызывает культивирование водорослей с использованием вторичных ресурсов. CO2 был и остается самым масштабным отходом промышленности. Водоросли могут использовать этот газ промышленного происхождения для своего роста и синтеза биомассы, поскольку процессы их метаболизма протекают более интенсивно при повышенных концентрациях углекислоты в среде. Таким образом, водоросли могут превращать углекислый газ из негативной проблемы в позитивный фактор, что открывает перспективы для улучшения экологической ситуации в мире.

Уникальными условиями для выращивания водорослей обладают сооружения по очистке сточных вод. Примером служит строительство ТЭС на Курьяновских очистных сооружениях (КОС), работающей на биогазе . Биогаз получается после сбраживания осадка первичных отстойников очистных сооружений. В результате этого в перебродившем осадке не остается ни одной болезнетворной бактерии, и он может быть использован в качестве высококачественного удобрения. Если в схему ТЭС встроить биореактор с водорослями, можно дополнительно получать биомассу для топлива, максимально оптимизировав затраты, поскольку очищенная сточная вода является благоприятной средой для роста микроводорослей. Здесь круглогодично имеются все необходимые условия для фотосинтеза: теплая вода, биогенные элементы (в фильтратах сточных вод после очистки ее активным илом достаточно фосфатов и нитратов - веществ, загрязняющих реки), углекислый газ (образуется в результате окисления органического вещества и сжигания метана на ТЭС). Подача отходящих газов ТЭС в культуру микроводорослей существенно стимулирует их рост. При производстве 1 кг сухой биомассы водорослей потребляется: 1,9 кг СО2, 80 г азота и 13 г фосфора. Получаемая биомасса - сырье для ряда ценных продуктов: биотоплива, органического удобрения или корма для животных. Таким образом, могут быть решены две проблемы: утилизация отходов первичных отстойников очистных сооружений и получение биотоплива.

Другим возобновляемым источником являются собственно илы озер, состоящие из отмерших микроводорослей и продуктов их жизнедеятельности . Красноярские ученые обратили внимание на этот бесплатный «склад» микроводорослей, который образуется естественно, без дополнительных затрат. Добывать илы специально для производства биодизеля затратно, но их достают со дна озера в экологических целях: для очистки. Каждые 15-20 лет для восстановления водной экосистемы положено вычерпывать и убирать донные осадки. Было предложено осадок, который является побочным продуктом природоохранных мероприятий, использовать в качестве сырья для биотоплива. Ученые изучили липидный состав полученного биодизеля: он оказался достаточно хорошим, по качеству соответствующим «Евро-4» и «Евро-5».

Технологический процесс производства биотоплив из водорослей практически безотходен. Сухие отходы биомассы после извлечения биомасла сохраняют все витамины и ценные вещества, поэтому могут быть использованы в качестве подкормки в рыбоводческих и животноводческих хозяйствах. Кроме того, возможно превращение их в еще один вид энергоносителей - топливные брикеты .

Можно отметить ряд потенциальных преимуществ производства биотоплива на основе фотосинтезирующих водорослей .

В отличие от сырья для первого и второго поколений биотоплива в производстве биомассы из водорослей не используются ни плодородные почвы, ни пресная вода. То есть процесс выращивания микроводорослей не конкурирует с сельскохозяйственным производством.

Используемые для производства биотоплива водоросли высокопродуктивны (до 100 т/га в год).

Различные водоросли производят биомасла посредством естественного фотосинтеза, для которого требуется солнечный свет, вода и углекислый газ, а также питательные вещества.

Растущие водоросли используют углекислый газ, обеспечивая снижение объемов парниковых газов в атмосфере.

Водоросли вырабатывают больший объем биотоплива с занимаемых площадей, чем источники биотоплива на базе сельскохозяйственных культур.

Произведенное водорослями биомасло и конечное биотопливо имеют молекулярную структуру, аналогичную нефти и нефтепродуктам.

Полученное из водорослей биомасло может быть использовано для производства всего ассортимента топлива, включая бензин, дизельное топливо и топливо для реактивных двигателей.

При наличии финансирования технологии, доведенные до промышленного применения, могут принести в течение 2-2,5 лет значительный экономический эффект. Московская ТЭЦ-21 вырабатывает в год 9,1 млрд кВт-ч электроэнергии; полное использование выбросов CO2 для выращивания водорослей позволит производить жидкие энергоносители суммарной энергетической ценностью от 8 до 11,4 млрд кВт-ч/год . Таким образом, использование биотоплива из водорослей может внести значительный, сопоставимый с производством электроэнергии, вклад.

К 2030 году объем производства биотоплива в мире может приблизиться к производству нефти . Основой такого производства может стать биомасса водорослей, которые сейчас практически не используются или используются с малой эффективностью. Это объясняется высокой стоимостью даже простой системы производства водорослей. В настоящее время еще не развиты технологии получения массовой культуры водорослей, начиная от выбора высокопродуктивных штаммов водорослей, которые можно было бы стабильно поддерживать в открытых водоемах, и заканчивая низкой себестоимостью их сбора. Основная задача, которая стоит перед альгологами, - необходимость достижения значительной продуктивности биомассы водорослей с высоким содержанием растительных масел или других прекурсоров биотоплива, необходимых для покрытия больших капитальных и эксплуатационных затрат производства водорослей. Тем не менее все усилия по преодолению этих ограничений оправданы, потенциал применения таких технологий вне конкуренции по сравнению с продовольственными культурами.

В настоящее время разрабатываются концепции и технологии для получения биотоплива четвертого поколения, которое будет более рентабельным и экологически чистым (с минимальным совокупным выбросом СО2 в атмосферу). Моделирование организмов с использованием методов генетической инженерии представляет основу для создания таких видов топлива. Заменяя одни гены другими, ученые могут заставить организмы, способные преобразовывать простые сахара и масла прямо в прекурсоры биотоплива, выделять эти соединения непосредственно в окружающую водную среду.

Однако радикально повысить эффективность фотосинтеза генно-инженерными методами, по-видимому, будет очень трудно .

Сегодня основная трудность в получении биотоплива из травы, опилок, ботвы культурных растений и тому подобного заключается в разложении важнейшего компонента растительной клетки - целлюлозы - на простые компоненты.

Ученые использовали микроорганизмы, обитающие в кишечнике жвачных животных - коров . Эти микроорганизмы выделяют специальные ферменты, разлагающие целлюлозу на простые компоненты, которые затем могут быть усвоены организмом животного .

Были исследованы геномы 20 видов бактерий, относящихся к родам Clostridium и Thermoanaerobacteraceae, и разработана специальная методика анализа биологического материала, которая позволила расшифровать ДНК этих до сих пор во многом загадочных микроорганизмов. В связи с этим выявлено около 30 тысяч генов, потенциально способных выполнять функции разложения целлюлозы. Из них было выбрано 90 генов ферментов, которые были протестированы на активность в процессах расщепления целлюлозы. Примерно 20 % из этого количества генов проявили способность активно разлагать целлюлозу, содержащуюся в растении просо. Таким образом, ученые открыли ранее неизвестные гены ферментов, которые могут быть использованы для разработки и генетической трансформации микроорганизмов с целью получения биотоплива из отходов растениеводства и сорной травы.

В Соединенных Штатах биологам удалось вывести несколько штаммов бактерий кишечной палочки, которые способны сразу осуществлять весь процесс производства биотоплива . Сам процесс производства биотоплива состоит из двух этапов. На первом этапе бактерии расщепляют целлюлозу и гемицеллюлозу. На втором этапе продукты расщепления синтезируются в биотопливо. Набор штаммов микроорганизмов объединил оба сложных этапа производства биотоплива. Эти организмы сами расщепляют все компоненты биомассы, превращают полученные элементы в сахара, из которых сами же и создают молекулы органического топлива.

Ученые вставили в геном кишечной палочки гены, которые отвечают за расщепление целлюлозы и гемицеллюлозы и выделение биотоплива. Сравнивая различные виды бактерий, расщепляющих биомассу, ученые выбрали десять самых эффективных ферментов и в геном кишечной палочки вставили гены, соответствующие этим ферментам. В результате бактерии с генами, отвечающими за расщепление гемицеллюлозы, и генами, разрушающими целлюлозу, заработали и стали образовывать промежуточные фрагменты-олигомеры. Гены заработали так, что олигомеры стали выделяться в среду выращивания, вне бактерии. Аналогичные наборы генов, расщепляющих уже олигомеры целлюлозы и гемицеллюлозы, подключили к предыдущим так, что они начинали работать, когда в питательном растворе накапливалось достаточное количество фрагментов гемицеллюлозы и целлюлозы. Последним этапом выстраивания «архитектуры» бактерий-биореакторов стало присоединение к модифицированным геномам кишечных палочек генов, которые будут синтезировать биотопливо. Фактически появился целый «живой конвейер», производящий биотопливо. Ученые уже проверили жизнеспособность новых бактерий на практике, с этой целью засеяв бактериями обработанную биомассу из стеблей и листьев гигантского проса.

Таким образом, были разработаны штаммы E. coli, которые осуществляют механизмы синтеза трех разных типов биотоплива. Это позволило продемонстрировать, что синтез топливных заменителей или прекурсоров для бензиновых, дизельных и реактивных двигателей происходит непосредственно в жидкой среде обработанного проса без добавления ферментов гидролаз. Такая демонстрация представляет собой важный шаг в реализации ослабления разногласий в осуществлении процессов производства биотоплива.

Учеными была разработана интересная «электромикробная» система, которая на входе получает электричество и углекислый газ, а на выходе производит изобутанол и 3-метил-1-бутанол - вещества, которые можно использовать в качестве жидкого топлива, пригодного для двигателей внутреннего сгорания . Главным компонентом в этой системе является генетически модифицированная бактерия Ralstonia eutropha. На катоде синтезируется формиат (HCOO), который поглощается бактериями. Окисляя формиат, бактерии производят НАДН, который затем используется для синтеза органики из CO2. Помимо веществ, необходимых для жизни и роста самих микроорганизмов, бактерии синтезируют биотопливо при помощи встроенного в их геном комплекса генов. Эта генетическая конструкция была разработана ранее и опробована на кишечной палочке . Основными ее компонентами являются гены ферментов, осуществляющих декарбоксилирование кетокислот, которые производятся бактериями в качестве промежуточных продуктов в ходе синтеза аминокислот валина и лейцина. В результате вещество, «предназначенное» для синтеза валина, частично превращается в изобутанол, а из предшественника лейцина производится 3-метил-1-бутанола. В итоге микробы могут расти в реакторе и производить биотопливо из углекислого газа, используя электрический ток в качестве единственного источника энергии.

Экологическая составляющая и экономические показатели различных методов производства биотоплива делают их недостаточно рентабельными, чтобы полностью вытеснить использование ископаемого топлива. Задача получения углеводородов биомассы в таких объемах и/или по такой себестоимости, чтобы они могли конкурировать с нефтью, может оказаться непростой даже для модифицированных микроорганизмов. Основная цель состоит в том, чтобы создать целый генетический код с нуля, контролируя все параметры.

Подводя итоги, отметим, что биомассу можно превращать в энергоемкие соединения, которые допустимо использовать для транспорта, для обогрева жилищ, для химической индустрии. Такое использование биомассы может сыграть существенную роль в энергетической безопасности и охране окружающей среды. Все это потребует значительных долгосрочных междисциплинарных усилий. Для того чтобы этого достигнуть, должен быть устранен целый ряд узких мест в интегрированной цепочке производства биотоплива: метаболическое конструирование и моделирование штаммов, накопление конкретных соединений, переработка биологических веществ, дизайн и эксплуатация фотобиореакторов и, наконец, использование логистики, которая объединяет все эти процессы в единое целое и делает их рентабельными.

Список литературы

Аршинова А. Вадим Яковлев (ИК СО РАН) о перспективах биотоплива // URL: www.computerra.ru/584522/

Варфоломеев С.Д., Ефременко Е.Н., Крылова Л.П. Биотоплива // Успехи химии. 2010. Т. 79. № 6. С. 544-564.

Моисеев И.И., Тарасов В., Трусов Л. Эволюция биоэнергетики. Времяводорослей// The Chemical Journal. 2009. Декабрь. С. 24-29.

Назаренко Л.В. Биотопливо: история и классификация видов биотоплива // Вестник МГПУ. Серия «Естественные науки». 2012. № 2 (10). С. 16-32.

Храменков С., Козлов М. и др. Ресурс особого назначения. Использование потенциала очищенной воды городов для производства биотоплива // Вода Magazine. 2011. № 1 (41). C. 18-22.

Atsumi S., Hanai Т., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels // Nature. 2008. V. 451. P. 86-89.

Atsumi S., Wu T. Y., EcklE.M. et al. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes // Appl. Microbiol .Biotechnol. 2010. V. 85 (3). P. 651-657.

Benemann J. Microalgae biofuels: a brief introduction // URL: www. adelaide.edu.au/biogas/renewable/biofuels_introduction.pdf.

Blankenship R.E., Tiede D.M. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement // Science. 2011. V. 332. P. 805-809.

Bokinsky G., Peralta-Yahya Р.Р. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli // PNAS. 2011. V. 108. № 50. P. 19949-19954.

Schenk P.M., Thomas-Hall S.R., Stephens Е. et al. Second generation biofuels: high- efficiency microalgae for biodiesel production // Bioenergy Research. 2008. V. 1. P. 20-43.

Chisti Y. Biodizel from microalgae // Biotechnology Advances. 2007. V. 25. P. 294-306.

Hemme C.L., Mouttaki Н. et al. Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production // J. Bacteriol. 2010. V. 192. № 24. P. 6494-6496.

Hess M., Sczyrba А. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen // Science. 2011. V. 331. P. 463-467.

Kuchkina A.Yu. Gladyshev M.I. et al. Biodiesel production from sediments of a eutrophic reservoir.

LiH., Opgenorth Р.Н. et al. Integrated electromicrobial conversion of CO2 to higher alcohols // Science. 2012. V. 335. P. 1596-1599.

RosenbergJ.N., Oyler G.A. et al. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution // Curr. Opin. Biotechnol. 2008. V. 19. P. 430-436.

Walker D.A. Biofuels, facts, fantasy, and feasibility // J. Appl. Phycol. 2009. V. 21. P. 509-517.

Weyer K.M., Bush D.R. et al. Theoretical Maximum Algal Oil Production // BioEnergy Research. 2010. V. 3. № 2. P. 204-213.

Wijffels R.H., Barbosa M.J. An outlook on microalgal biofuels // Science. 2010. V. 379. P. 796-799.

Растёт спрос на биотоплива - горючие жидкости, изготовленные из возобновляемых биологических ресурсов. Один из них - древесина. Можно ли из древесины получать топливо, не уступающее нефтяному?

Первое, что нужно уяснить - это то, что именно бензина или керосина из дерева сделать нельзя. Оно не поддаётся разложению на углеводороды с прямой цепью, из которых главным образом состоят нефтепродукты. Однако это не означает, что из него нельзя получать вещества, способные заменить нефтепродукты.

Некоторые любят табуретовку

Первый в списке, конечно же, спирт. Из древесины можно получать два различных вида спирта. Первый, который так и называется древесным - по-научному метиловый спирт. Это вещество очень похоже на привычный этиловый спирт, как по горючести, так и по запаху и вкусу. Однако метиловый спирт отличается тем, что весьма ядовит, и приём его внутрь может привести к смертельному отравлению. Вместе с тем он является высококачественным моторным топливом, его октановое число даже выше, чем у этилового спирта, и намного выше, чем у обыкновенного бензина.

Технология получения метилового спирта из древесины очень проста. Он получается путём сухой перегонки, или пиролиза. Точнее, он является одной из составных частей жижки - смеси кислородсодержащих органических веществ, отделяющихся от свежевыгнанной древесной смолы. Однако выход полученного таким образом спирта слишком мал, чтобы он мог использоваться в качестве топлива. Это делает подобную технологию получения топлива бесперспективной.

Однако из древесины можно получить и этиловый спирт, в намного больших количествах. Этот спирт - так называемый гидролизный - получается при разложении целлюлозы, основного компонента древесины, с помощью серной кислоты. Вернее, при разложении целлюлозы получаются сахара, которые в свою очередь могут быть переработаны в спирт обычным путём. Этот способ получения этилового спирта весьма распространён в промышленности, именно гидролизным способом получают практически весь технический спирт, применяемый в непищевых целях.

Этиловый спирт может быть использован как непосредственно вместо бензина, так и в качестве присадки к бензину. Путём таких присадок получаются различные сорта биотоплива, популярные, в частности, в таких странах, как Бразилия.

Получение этилового спирта путём гидролиза древесины экономически несколько менее выгодно, чем получение его из различных сельскохозяйственных культур. Однако выгодной стороной такого способа получения биотоплива является то, что он не требует отведения сельскохозяйственных площадей под «топливные» культуры, не дающие пищевых продуктов, а позволяет использовать для его производства территории, задействованные в лесном хозяйстве. Это делает получение биотопливного этанола из древесины достаточно практичной технологией.

И терпентин на что-нибудь полезен

Недостатком этанола как топлива является его низкая теплота сгорания. При использовании в двигателях в чистом виде он даёт или меньшую мощность, или больший расход, чем бензин. Решить эту проблему помогает смешивание спирта с веществами с высокой теплотой сгорания. И не обязательно это продукты из нефти: в качестве такой присадки вполне годится скипидар, или терпентин.

Скипидар - тоже продукт переработки древесины, а если конкретно - хвойной: сосен, елей, лиственниц и других. Он достаточно широко применяется как растворитель, а наиболее очищенные его сорта находят применение в медицине. Однако лесоперерабатывающая промышленность в качестве побочного продукта производит большое количество так называемого сульфатного скипидара - низшего сорта, содержащего ядовитые примеси, не только неприменимого в медицине, но и находит весьма ограниченное применение в химической и лакокрасочной промышленности.

Вместе с тем скипидар из всех продуктов переработки древесины более всего похож на нефтепродукт, точнее - на керосин. Он отличается весьма высокой теплотой сгорания, может использоваться как горючее в керосиновых примусах, лампах, керогазах. Пригоден он и в качестве моторного топлива, правда, непродолжительное время: если его заливать в баки в чистом виде, двигатели вскоре выходят из строя из-за засмоления.

Однако скипидар можно использовать в качестве топлива не в чистом виде, а в качестве присадки к этанолу. Такая присадка не сильно снижает октановое число этилового спирта, но повышает теплоту его сгорания. Ещё одна положительная сторона такой технологии изготовления биотоплива в том, что скипидар денатурирует спирт, делает его непригодным для употребления внутрь в качестве алкоголя. А социальные последствия широкого внедрения неденатурированного спирта в качестве топлива могут стать весьма тяжелыми.

Лигниновые отходы - в доходы!

Такой компонент древесины, как лигнин, считается малополезным. Его применение в промышленности значительно менее широкое, нежели у целлюлозы. Несмотря на то, что он находит применение в производстве строительных материалов и в химической промышленности, чаще его просто сжигают прямо на лесохимпроизводстве. Однако, как выясняется, при пиролизе лигнина можно получить более разнообразные продукты, чем при пиролизе целлюлозы.

Лигнин состоит главным образом из ароматических циклов и коротких прямых углеводородных цепей. Соответственно, при его пиролизе получаются преимущественно углеводороды. Однако, в зависимости от технологии пиролиза, можно получать как продукт с высоким содержанием фенола и родственных ему веществ, так и жидкость, напоминающую нефтепродукты. Эта жидкость также пригодна в качестве присадки к этиловому спирту для получения биотоплива.

Разработаны технологии и установки для пиролиза, которые могут потреблять как лигнин из отвалов, так и неразделённые на лигнин и целлюлозу отходы древесины. Более высокие результаты получаются при смешивании лигнина или древесных отходов с мусором, состоящим из выброшенного пластика или резины: пиролизная жидкость получается более нефтеподобной.

Мирный атом и опилки

Ещё одна технология получения биотоплива из древесины разработана совсем недавно российскими учёными. Она относится к области радиохимии, то есть химических процессов, протекающих под воздействием радиоактивного излучения. В опытах учёных из ИФХЭ им. Фрумкина опилки и другие отходы древесины подвергались одновременному воздействию сильного бета-излучения и сухой перегонки, причём нагревание древесины проводилось именно с помощью сверхсильной радиации. Удивительно, но под воздействием радиации состав продуктов, получаемых при пиролизе, изменился.

В пиролизной жидкости, полученной «радиоактивным» способом, было обнаружено высокое содержание алканов и циклоалканов, то есть углеводородов, содержащихся главным образом в нефти. Эта жидкость получилась значительно легче нефти, сравнимой, скорее, с газоконденсатом. Причём экспертиза подтвердила пригодность этой жидкости для использования в качестве моторного топлива или переработки в высококачественные топлива, такие, как автомобильный бензин. Думаем, что это не заслуживает особого упоминания, но проясним ради успокоения страхов радиофобов: бета-излучение не способно вызывать наведённую радиоактивность, поэтому топливо, получаемое этим способом, безопасно и не проявляет радиоактивных свойств само.

Что пускать в переработку

Понятно, что предпочтительнее использовать для производства биотоплива не цельные стволы деревьев, а отходы переработки древесины, такие, как опилки, щепу, веточки, кору, да и тот же лигнин, который идёт в отвалы и печи. Выход этих отходов с гектара поваленного леса, конечно же, ниже, чем древесины в целом, но не следует забывать, что они получаются в качестве побочного продукта в производственных процессах, которые уже идут на многих предприятиях страны, соответственно, отходы производства дешевы и для их получения не нужно вырубать или засаживать под вырубку дополнительные площади леса.

В любом случае, древесина является ресурсом возобновляемым. Способы восстановления лесных площадей давно известны, а во многих регионах страны наблюдается даже и неконтролируемое зарастание лесом заброшенных сельскохозяйственных земель. Так или иначе, Российская Федерация не относится к странам, где к сбережению леса следует относиться со всем тщанием; площадей нашего леса и его потенциала к самовосстановлению вполне достаточно, чтобы загрузить полностью и лесоперерабатывающую промышленность, и производство биотоплив, и многие другие производства.

Биотопливо – это источник энергии, который получается из растительного или животного сырья. Бывает в жидком, твердом и газообразном состояниях.

Что это такое биотопливо и его виды

Само слово биотопливо у многих людей на слуху, но что это конкретно, мало кто знает, тем более мало кто сможет объяснить, как и из чего его производят.

Биотопливо – это источник альтернативной энергии, который производится из биологического сырья.

Существует несколько видов подобного топлива, которые отличаются по своему физическому состоянию, это:

  1. Жидкое биотопливо;
  2. Твердое биотопливо;
  3. Газообразное биотопливо.

Твердое биотопливо

Более широкое распространение в жизни человека получило твердое биотопливо. Этот вид топлива известен людям с древних времен – это обыкновенные дрова. В связи с развитием технологий и совершенствованием процессов обработки древесины, в данном сегменте твердого биотоплива появились новые участники, это топливные брикеты и топливные гранулы (паллеты), которые, по сути своей, похожи, отличаются лишь в технологии производства и способам использования.

Кроме древесных отходов, для изготовления брикетов и гранул используют отходы сельского хозяйства (солому, шелухи ветки и т.д.) и продукты жизнедеятельности животных (навоз, помет и т.д.).

Жидкое биотопливо

Данный вид биотоплива менее распространен, из-за малого производимого количества и необходимости конструктивных изменений в агрегатах, привычно работающих на бензине и дизельном топливе.

Существует несколько видов жидкого биотоплива, полученных путем переработки растительного сырья, это:

  • Биоэтанол – этиловый спирт;
  • Биометанол – метиловый спирт;
  • Биобутанол – бутиловый спирт;
  • Диметиловый эфир – простой эфир;
  • Дизельное биотопливо — жидкое моторное топливо для дизельных двигателей, состоит из смеси эфиров жирных кислот.

Газообразное биотопливо

Оно также пока не получило широкого распространения, к данному виду относятся:

  • Биогаз – газ, получаемый в результате брожения веществ растительного или животного происхождения. Процесс брожения, в этом случае, происходит под воздействием бактерий;
  • Биоводород – это водород, полученный из биомассы;
  • Метан – газ из семейства углеводородов.

Распространение данного вида энергоресурсов

В настоящее время биотопливо, во всех своих состояниях, разве лишь за исключением твердых видов, не нашло широкого распространения в повседневной жизни. Но в связи с тем, что запасы привычных видов энергии постоянно сокращаются, а запасы биомассы, которая может послужить сырьем для получения жидкого и газообразного видов биотоплива, колоссальны, то и работы по применению в повседневной жизни этих видов топлива, продолжаются.

Биотопливо, кроме различия по физическим свойствам, различаются еще по двум типам, это:

  1. Биотопливо первого поколения – производится из сельскохозяйственных культур (кукуруза, сахарный тростник, рапс, соя и т.д.),что создает конкуренцию прочим сельскохозяйственным культурам, используемых для пищи человека.
  2. Биотопливо второго поколения – в этом случае используется сырье, которое не используется человеком в качестве пищи. Это отработанные жиры и масла, деревья, трава.

Распространение данных видов топлива напрямую связано с использованием биодизеля и биоэтанола, который является хоть и
не в полной мере, но все же заменителем бензина.

В настоящее время объемы биомассы, которые могут быть переработаны, используются лишь на 5 – 6%, это обусловлено

финансовыми тратами для внедрения существующих технологий, инвестиций в эти исследования и технологии.

Разработчики проекта «Стратегии развития топливно-энергетического комплекса России до 2020 года» учли существующий потенциал нашей страны, который состоит из двух составляющих, это:

  • Технический потенциал, который характеризуется приростом биомассы;
  • Экономический потенциал, целесообразный объем сбора биомассы.

В рамках стратегии развития страны, разработки новых технологий и способах их внедрения, роста цен на традиционные
энергоносители, привлекательность биотоплива неукоснительно растет и процесс внедрения этих технологий будет продолжаться.

Применение биотоплива для автомобилей

Как уже выше писалось, для современного топлива автомобилей есть замена в виде биотоплива, это:

  • Для дизельных двигателей – биодизель;
  • Для двигателей внутреннего сгорания – биоэтанол.

Биодизель получают из растительных масел (рапсовое, соевое, пальмовое) и метанола.

Биодизель второго поколения производят из микроводорослей и масленичных культур. Отдельный вид биодизеля – грин-дизель, который является смесью углеводородов и представляется на рынке, как улучшающая добавка к обычному топливу.
Как правило, биодизель для заправки автомобилей используют в смеси с обычным дизельным топливом (соляркой) в соотношении 20/80%, где биодизеля 20%. Недостаток такого смешивания – повышенный расход топлива и снижение мощности.
Биоэтанол в чистом виде для заправки автомобиля использовать нельзя, т.к. это окислитель и растворитель. Для его
использования требуется реконструкция авто с заменой элементов топливной системы на узлы, изготовленные из нержавеющей стали и стойкого пластика.

В мире созданы автомобили с двигателями внутреннего сгорания, которые работают на смеси биоэтанола и бензина в соотношении:

  • 85/15% — в США;
  • 10/90% — в странах Европы;
  • 20/80% — в Бразилии,

Считается, что при данных пропорциях (кроме США, там автомобили были реконструированы), такое соотношение топлива не вредит системам автомобиля, что позволяет использовать биоэтанол уже при существующих технологиях.

Биотопливо для камина

По общепринятому мнению – лучшим топливом для камина являются спиртосодержащие жидкости. В связи с этим можно с уверенность сказать, что в качестве биотоплива для камина можно использовать:

  • Биоэтанол – этиловый спирт;
  • Биометанол – метиловый спирт;
  • Биобутанол – бутиловый спирт;
  • Демитиловый эфир – простой эфир;
  • Дизельное биотопливо.

Эти вещества можно использовать как в чистом виде, так и в составе с прочими составляющими.

Биотопливо для каминов производят в разных странах, это США, Канада, ЮАР и страны Европы. Наиболее известные в России польские компании «Kratki» и «Planika».

В России биотопливо для каминов производят: компания «БИОТЕПЛО», Мастерская биокаминов BioKer и еще ряд компаний.

Цены на биотопливо для каминов находятся в диапазоне от 500 («Planika») до 2000 рублей (BioKer) за 5 литров топлива.

Биотопливо из водорослей

Разработана и успешно используется технология получения биотоплива из водорослей.

Плюсом использования водорослей для промышленного применения, является то, что для их выращивания не требуется занимать части суши, они растут в любой воде и не требуют особого ухода, с одной стороны, а с другой – способны осуществлять значительный прирост биомассы за малые промежутки времени.

Имея в своем составе простые химические элементы, водоросли легко перерабатываются.

Как сделать своими руками

Человек в повседневной жизни периодически пользуется биотопливом, это с полной уверенностью можно отнести к твердым видам топлива – дрова, опилки, солома и т. д. Для изготовления топливных брикетов не нужно специальных приспособлений и механизмов, это может сделать каждый, у кого есть продукты переработки дерева и желание.

Более сложный процесс, это получение биотоплива из навоза, являющимся продуктом жизнедеятельности сельскохозяйственных животных. В этом случае получается биогаз, который можно использовать для сжигания, тем самым нагревать воду в системах горячего водоснабжения или теплоноситель, в системах обогрева зданий и сооружений.

Вначале следует определиться с местом, где будет располагаться установка. Выбранный участок должен быть удален от жилых
строений, дабы не создавать неудобства запахами, выделяющимися в процессе брожения биомассы.

На выбранном участке выкапывается яма, в которой делается гидроизоляция и сооружается емкость накопитель. Емкость может быть из железобетонных колец с герметизацией стыков, кирпичной с оклейкой гидроизоляцией, металлической. В верхней части устраивается люк и крышка. Монтируются трубопроводы для отвода образовавшегося газа.

В построенную емкость загружается навоз, картофельная ботва и прочие растительные отходы, после чего все заливается водой. В емкости начнется процесс брожения, и как следствие, начнет выделяться биогаз.

В состав получаемого таким образом газа будет входить — метан, углекислый газ и примеси других газов.

С 1 кг органического вещества можно получить около 0,5 кг биогаза.