А периодической кв antena с сопротивлением. Об антеннах, коаксиальных кабелях и ксв, по-простому о сложном. Полоса пропускания антенны

ЛЕКЦИЯ 9.


  • ^ Изотропный излучатель

  • Симметричный вибратор

  • Основные характеристики антенн. Амплитудная характеристика направленности антенн

  • Сопротивление излучения

  • Волновое сопротивление антенны

  • Входное сопротивление

  • Сопротивление потерь
^

ИЗОТРОПНЫЙ ИЗЛУЧАТЕЛЬ.


Под изотропным излучателем понимается такое устройство, которое равномерно и одинаково излучает электромагнитную энергию во все стороны.

Однако на практике ненаправленных излучателей не существует. Каждая передающая антенна, даже самая простейшая, излучает энергии неравномерно и всегда имеется направление, в котором излучается максимум энергии.

Простейшим или элементарным излучателем является электромагнитный электрический вибратор, который состоит из очень короткого по сравнению с длиной волны провода, обтекаемый электрическим током, амплитуда и фаза которого одинаковы в любой точке провода. Практической моделью элементарного вибратора является диполь Герца. Структура поля излучения диполя Герца имеет максимум в точке, лежащей на прямой, перпендикулярной диполю. Вдоль диполя поле = 0.
^

СИММЕТРИЧНЫЙ ВИБРАТОР.


Состоит из двух проводников одинаковой длины, между которыми включается питающая линия – фидер, соединяющая антенну с передатчиком.

Наиболее частот применяется симметричный вибратор длиной l в половину  , называемый полуволновым вибратором рис. 37а.

Вследствие отражения тока и напряжения у концов проводов антенн вдоль проводов устанавливается стоячая волна тока и напряжения.

Вдоль полуволнового вибратора устанавливается пол волны тока и напряжения, вдоль вибратора длиной в волну – волна тока и напряжения рис.37б. Однако в любом случае на концах устанавливается узел тока и пучность напряжения
^

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ АНТЕНН.

АМПЛИТУДНАЯ ХАРАКТЕРИСТИКА НАПРАВЛЕННОСТИ АНТЕНН.

Направленные свойства антенн принято определять амплитудной характеристикой направленности, т.е. зависимостью напряженности излучаемого антенной поля Е (,) в точке наблюдения при неизменном расстоянии. Графическое изображение амплитудной характеристики направленности называется диаграммой направленности, которая изображается в виде поверхности, описываемой исходящим из начала координат радиус–вектором, длина которого в каждом направлении пропорциональна функции F (, ).

Диаграмму направленности строят как в полярной (рис. 38а), так и в прямоугольной (рис. 38б) системе координат.

Направление максимального излучения антенн называется главным направлением. А соответствующий ему лепесток – главным. Остальные лепестки являются боковыми. Направления, в которых антенна не принимает и не излучает, называются нулями диаграммы направленности.

Главный лепесток характеризуют шириной по половинной мощности  0,5 и шириной по нулям  0 . Ширина  0,5 определяется из ДН на уровне 0,707, он взят исходя из того, что мощность на уровне 0,5 и напряженность поля на уровне 0,707 связаны соотношением

Р 0,5 / Р мах = Е 2 0,707 / Е 2 мах = 0,5 .

Коэффициент направленного действия КНД характеризует способность антенны концентрировать излученное электромагнитное поле в каком-либо направлении. Он представляет собой отношение плотности потока мощности, излучаемого антенной в данном направлении, к усредненной по всем направлениям плотности потока мощности. Иными словами, при определении КНД антенна сравнивается с воображаемой, абсолютно ненаправленной или изотропной антенной, излучающей ту же мощность, что и рассматриваемая.

Для апертурных антенн

К нд = 4 К исп S а /  2 ,

Где: К исп – коэффициент использования излучающей поверхности КИП;

S а – площадь раскрыва антенны.

У большинства антенн РРЛ и спутниковых систем передачи ширина ДН по половинной мощности в вертикальной плоскости примерно равна ширине диаграммы в горизонтальной плоскости.

Для учета КПД реальной антенны, вводится понятие коэффициента усиления КУ антенны, которая определяется соотношением

G =  а К нд ,

где: а = Р / Р 0 - КПД антенны;

Р  - излучаемая антенной мощность;

Р 0 – подводимая к антенне мощность.

Коэффициент усиления антенны показывает, во сколько раз следует уменьшить мощность, подводимую к антенне, по сравнению с мощностью, подводимой к изотропному излучателю с КПД равным 1, чтобы напряженность поля в точке приема оставалась неизменной.

В диапазоне дециметровых и сантиметровых волн  а 1 , поэтому

G = К нд.

Коэффициент защитного действия КЗД вводится для характеристики степени ослабления антенной сигналов, принятых с побочных направлений, и рассчитывается по формуле К зд = G мах / G поб, где G мах и G поб – коэффициенты усиления антенны в направлении главного лепестка ДН и в побочном направлении.
^

СОПРОТИВЛЕНИЕ ИЗЛУЧЕНИЯ.


Сопротивление излучения антенны R изл – показатель, имеющий размерность сопротивления и связывающий излучаемую мощность Р изл с током I А, протекающим через какое – либо сечение антенны

R изл = Р изл / I А 2 .

Так как токи и напряжения по длине антенны распределены неравномерно, то для округления величины R изл, в большинстве случаев излучаемую мощность относят к квадрату максимальной амплитуды тока (в пучности) или в квадратуру тока на входных зажимах антенны.

Величина R изл зависит от соотношения между размерами антенны и длиной волны, формы антенны и других факторов.

Так, увеличение длины уединенного симметричного вибратора до l =  , ведет к росту сопротивления излучения. Однако дальше она падает, затем снова возрастает.

В общем случае R изл имеет комплексный характер.

Например, для тонкого полуволнового вибратораR изл = 73,1 Ом, а Х изл = 42,5 Ом.

Увеличение толщины вибратора приводит к уменьшению величины волнового сопротивления.
^

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ АНТЕННЫ.


Волновое сопротивление антенны Z ОА является одним из важных параметров. Рассматривается волновое сопротивление методами теории длинных линий.

Для одиночного цилиндрического проводника длиной l , к которому может быть отнесена антенна в виде симметричного вибратора, расчетная формула имеет вид

,

где: r п – радиус проводника.

Увеличение толщины проводника приводит к уменьшению волнового сопротивления.
^

ВХОДНОЕ СОПРОТИВЛЕНИЕ.


Входное сопротивление антенны – показатель, представляющий отношение напряжения на зажимах антенны к протекающему через них току. В общем случае это сопротивление имеет комплексный характер

Z Авх = R Авх + Авх

где:R Авх – активная составляющая входного сопротивления;

Х Авх – реактивная составляющая входного сопротивления.
^

СОПРОТИВЛЕНИЕ ПОТЕРЬ.


Сопротивление потерь определяется как:

R п = R н + R и + R 3 ,

где:R н - сопротивление потерь на нагрев проводов;

R и - сопротивление потерь в изоляторах антенны;

R 3 - сопротивление потерь в земле и в системах заземления.

В. Поляков, RA3AAE

В этой статье нет ничего нового, она позволяет лишь взглянуть под иным углом зрения на давно известные факты, а также может послужить общеобразовательным целям. Есть и немного ностальгии…

Хорошо известно, что электрически короткие проволочные или штыревые антенны (длиной менее четверти волны) имеют емкостное реактивное сопротивление X и малое активное сопротивление излучения r, причем первое растет с укорочением антенны, а второе - уменьшается. Потери в самой антенне весьма малы, это подтверждают и программы моделирования антенн, например MMANA, показывая высокий КПД. Потери возникают в согласующей катушке (удлиняющей, либо контурной) и в заземлении.

Эквивалентную схему короткой заземленной приемной антенны обычно изображают так, как на рис. 1 справа. Е обозначает напряженность поля принимаемого сигнала, а hд - действующую высоту антенны. Слева показана сама антенна и распределение тока в ней. Оно синусоидальное, но для коротких антенн его приближенно считают треугольным.

Емкостное сопротивление Х и сопротивление излучения r антенны определяют по формулам, приводимым во многих книгах и учебниках:
X = Wctg(2ph/l), и r = 160p2(hд/l)2,

где W - волновое сопротивление провода антенны.

Формулы удается упростить, введя волновое число k = 2p/l и заменив умножение на котангенс делением на тангенс, а его, в свою очередь, заменив аргументом, ввиду его малости (h << l). С учетом того, что действующая высота hд антенны в виде короткого вертикального провода равна половине геометрической h из-за треугольного распределения тока, получим:

X = W/kh, и r = 10(kh)2.

К сожалению, эквивалентная схема на рис. 1 недостаточно наглядна, поскольку не показывает реального шунтирования входа приемника антенной. Целесообразно воспользоваться правилами преобразования последовательного соединения емкости и активного сопротивления в паралельное (см. книги по теории цепей). Для нашего случая, когда r << X, они очень просты (рис. 2).


Получившаяся эквивалентная схема приемной антенны показана на рис. 3, и из нее видно, что импеданс антенны определяется параллельно включенными емкостью С и резистором R. Этот импеданс шунтирует вход приемника независимо от того, есть напряжение сигнала на антенне, или его нет. Емкость С - это просто емкость антенны, для тонкого провода ее легко найти из расчета 5...7 пФ/м, а для относительно "толстых" телескопических антенн - 8...12 пФ/м.

Сопротивление R найдем, подставив в последнюю формулу на рис. 2 найденные выше значения X и r:
R = W2/10(kh)4.

Для тонкого провода в свободном пространстве W обычно полагают равным 600 Ом. Подставляя это значение, а также k = 2p/l, получим расчетную формулу:
R = 23(l/h)4.

С ее помощью, для иллюстрации, посчитаем емкость и сопротивление короткой проволочной вертикальной антенны для частоты 1 МГц (средняя частота диапазона СВ) и полагая сопротивление заземления равным нулю.

Результаты расчета сведены в таблицу:

Высота антенны h, м 1 3 10 30
h/l 1/300 1/100 1/30 1/10
С, пФ 6 18 60 180
R, Ом 11
2.10
9
2,3.10
7
2.10
5
2,3.10
R 0,2 ТераОм 2 ГигаОм 20 МегаОм 230 килоОм

Они поражают. Из таблицы видно, что эквивалентное (параллельное входу) активное сопротивление короткой вертикальной антенны огромно. Оно практически не шунтирует вход приемника. Это позволяет при низком входном сопротивлении приемника не учитывать активное сопротивление антенны R и считать, что на вход приемника поступает только емкостный ток через С (рис. 3). Тогда напряжение на входе приемника удается рассчитать просто по закону Ома.

Пример: к 50-омному входу приемника, работающего в диапазоне СВ, подключена 3-х метровая вертикальная антенна. Ее емкостное (18 пФ) сопротивление на частоте 1 МГц более 8 кОм. При напряженности поля радиостанции 10 мВ/м наведенное на антенне напряжение будет: E.hд = 10мВ/м.1,5м = 15 мВ. Емкостный ток получается около 15мВ/8кОм = 2мкА. Помножив его на сопротивление входа (50 Ом) получаем напряжение на входе около 100 мкВ.

Из примера видно, что короткие антенны не могут развить на низкоомном входе приемника большого напряжения. В то же время на входе приемника с высокоомным входом (значительно более 8 кОм) та же антенна могла бы развить напряжение, близкое к E.hд, т. е. около 15 мВ. Именно такими и были старинные радиоприемники - одноламповые регенераторы, прямого усиления, и даже ламповые супергетеродины.

В одноконтурных регенераторах антенну подключали к контуру либо непосредственно, либо через конденсатор связи небольшой емкости (рис. 4). Непосредственное подключение (гнездо А2) годится только для совсем коротких антенн с небольшой емкостью, которая компенсируется соответствующим уменьшением контурной емкости С2. Длинную антенну нельзя включать в гнездо А2, ибо это привело бы к сильной расстройке и внесению большого затухания в контур. Ее включали в гнездо А3, причем конденсатор связи С2 в разумно спроектированных конструкциях делали регулируемым, например 8…30 пФ, что позволяло ослаблять связь с антенной при сильных сигналах и больших помехах.

Резонансное сопротивление контура достигает на частотах СВ диапазона сотен килоом, а на ДВ еще больше. В регенераторах его надо еще помножить на коэффициент регенерации, тогда получаются многие мегаомы. Как видим, старинные приемники очень хорошо подходили для работы с короткими проволочными антеннами, имея очень высокое входное сопротивление. Не изменилась ситуация и в приемниках прямого усиления с УРЧ и супергетеродинах.

В эпоху до широкого применения магнитных антенн для связи с антенной использовали катушку L1 имевшую в 4…5 раз больше витков, чем контурная. Рассчитывали, чтобы эта катушка с емкостью «стандартной» антенны образовывала резонансный контур, настроенный на частоту ниже самой нижней частоты диапазона. Тогда выравнивался коэффициент передачи входной цепи по диапазону. Расчет и графики можно найти в учебниках по радиоприемным устройствам. Но в них не упоминают другой эффект от такого решения. Сопротивление контура трансформировалось к антенне в 16…25 раз при сильной связи и несколько меньше при слабой. Опять таки входное сопротивление приемника получалось несколько мегаом и более.

Приведенные данные ясно показывают, что для экспериментов с уникальными слаботочными антеннами (метелочными, костровыми и т. д.) нужны именно приемники с высокоомным входом, включающим настроенный контур, лампу или полевой транзистор.

После ряда экспериментов со спиральными антеннами был построен график

входного сопротивления дипольной и вертикальной спиральной антенн в зависимости от коэффициента укорочения (рис. 6.9) в диапазоне 7…28 МГц. Антенны были выполнены на диэлектрическом каркасе диаметром от 10 мм до 10 см, намотка спирали была равномерной, использовался провод диаметром более 0,5 мм.

Как показали опыты, для укороченных спиральных антенн, имеющих К = 2…10, изменение диаметра их каркаса в пределах 1…10 см не влияет в значительной степени на входное сопротивление. Однако для сильно укороченных спиральных антенн с К > 10 полученные мной результаты показали, что входное сопротивление в значительной мере зависит от диаметра их диэлектрического каркаса и от частоты, на которой спиральная антенна имеет резонанс, поэтому для них такого простого графика, как на рис. 6.9 получить не удалось.

Как видно из этого графика, для питания дипольных и вертикальных спиральных антенн с К > 3 подходит коаксиальный кабель волновым сопротивлением 50 Ом, электрической длиной кратной половине длины волны работы антенны. В некоторых случаях вертикальные антенны первоначально имели входное сопротивление значительно большее, чем на рис. 6.9, но настройка «земли» антенны в резонанс позволяла его понизить. Подключение коаксиального кабеля к вертикальной антенне обычно незначительно изменяет ее входное сопротивление на конце подключения кабеля к трансиверу, в этом случае изменение входного сопротивления

происходит в сторону уменьшения. Дипольная спиральная антенна по

сравнению с вертикальной обычно имеет входное сопротивление более приближенное к показанному на графике. Однако, подключение коаксиального кабеля к дипольной спиральной антенне может привести к тому, что сопротивление антенны будет значительно отличаться от указанного на графике, причем, как в сторону увеличения, так и в сторону уменьшения. Ферритовые кольца в количестве не менее 10 шт., установленные на концах коаксиального кабеля, уменьшают его влияние

на входное сопротивление, но не устраняют полностью. Если коэффициент удлинения спиральной антенны превышает 5, на конце коаксиального кабеля, питающего антенну, целесообразно устанавливать высокочастотный дроссель не из ферритовых колец, а в виде 5–20 витков коаксиального кабеля диаметром 10…20 см.

Изменение диаметра спирали и диаметра провода, используемого для намотки реальной укороченной антенны, не оказывает значительного влияния на входное сопротивление антенны. Происходит это потому, что при увеличении диаметра спирали антенна излучает более эффективно, следовательно, возрастает сопротивление излучения антенны, и возрастает ее входное сопротивление. При уменьшении диаметра спирали, эффективность излучения антенной электромагнитных волн уменьшается, поэтому падает сопротивление излучения, но возрастают диэлектрические потери в каркасе спирали. Рост диэлектрических потерь приводит к росту входного сопротивления спиральной антенны. Очевидно, что для увеличения эффективности работы спиральной антенны необходимо использовать для изготовления ее спирали провод как можно большего диаметра и диаметр витков спирали должен быть максимально возможным для практического выполнения антенны. Каркас, на котором выполнена спираль антенны, должен иметь малые диэлектрические потери. В конструкции спиральной антенны желательно использовать равномерную намотку спирали.

Измерительный мост высокой частоты представляет собой обычный мост Уитстона и может использоваться для определения степени согласованности антенны с линией передачи. Эта схема известна под многими названиями (например, «антенноскоп» и т. д.), но в основе ее всегда лежит принципиальная схема, изображенная на рис. 14-15.

По мостовой схеме протекают токи высокой частоты, поэтому все резисторы, используемые в ней, должны представлять чисто активные сопротивления для частоты возбуждения. Резисторы R 1 и R 2 подбираются в точности равными друг другу (с точностью 1% или даже больше), а само сопротивление не имеет особого значения. При сделанных допущениях измерительный мост находится в равновесии (нулевое показание измерительного прибора) при следующих соотношениях между резисторами: R 1 = R 2 ; R 1: R 2 =1:1; R 3 = = R 4 ; R 3: R 4 = 1: 1.

Если вместо резистора R 4 включить испытываемый образец, сопротивление которого требуется определить, а в качестве R 3 использовать отградуированное переменное сопротивление, то нулевое показание измерителя разбаланса моста будет достигнуто при значении переменного сопротивления, равном активному сопротивлению испытываемого образца. Таким образом можно непосредственно измерить сопротивление излучения или входное сопротивление антенны. При этом следует помнить, что входное сопротивление антенны чисто активно только в случае, когда антенна настроена, поэтому частота измерений всегда должна соответствовать резонансной частоте антенны. Кроме того, мостовая схема может использоваться для измерения волнового сопротивления линий передачи и их коэффициентов укорочения.

На рис. 14-16 показана схема высокочастотного измерительного моста, предназначенного для антенных измерений, предложенная американским радиолюбителем W 2AEF (так называемый «антенноскоп»).

Резисторы R 1 и R 2 обычно выбираются равными 150-250 ом ,и абсолютная их величина не играет особой роли, важно только, чтобы сопротивление резисторов R 1 и R 2 , а также емкости конденсаторов С 1 и С 2 были равны друг другу. В качестве переменного сопротивления следует использовать только безындуктивные объемные переменные резисторы и нив коем случае не проволочные потенциометры. Переменное сопротивление обычно 500 ом , а если измерительный мост используется для измерений только на линиях передачи, изготовленных из коаксиальных кабелей, то 100 ом , что позволяет более точно производить измерения. Переменное сопротивление градуируется, и при балансе моста оно должно быть равным с сопротивлением испытываемого образца (антенны, линии передачи). Дополнительное сопротивление R Ш зависит от внутреннего сопротивления измерительного прибора и требуемой чувствительности измерительной схемы. В качестве измерительного прибора можно использовать магнитоэлектрические миллиамперметры со шкалой 0,2; 0,1 или 0,05 ма . Дополнительное сопротивление следует выбирать по возможности высокоомным, так чтобы подключение измерительного прибора не вызывало значительного разбаланса моста. В качестве выпрямляющего элемента может использоваться любой германиевый диод.

Проводники мостовой схемы должны быть как можно короче для уменьшения их собственной индуктивности и емкости; при конструировании прибора следует соблюдать симметрию в расположении его деталей. Прибор заключается в кожух, разделенный на три отдельных отсека, в которых, как показано на рис. 14-16, помещаются отдельные элементы схемы прибора. Одна из точек моста заземляется, и, следовательно, мост несимметричен относительно земли. Поэтому мост наиболее подходит для измерения на несимметричных (коаксиальных) линиях передачи. В случае, если требуется использовать мост для измерения на симметричных линиях передачи и антеннах, то необходимо тщательно изолировать его от земли с помощью изолирующей подставки. Антенноскоп может применяться как в диапазоне коротких, так и ультракоротких волн, и граница его применимости в диапазоне УКВ в основном зависит от конструкции и отдельных схемных элементов прибора.

В качестве измерительного генератора, возбуждающего измерительный мост, вполне достаточно использовать гетеродинный измеритель резонанса. Следует иметь в виду, что высокочастотная мощность, поступающая на измерительный мост, не должна превышать 1 вт, и мощность, равная 0,2 вт, вполне достаточна для нормальной работы измерительного моста. Ввод высокочастотной энергии осуществляется с помощью катушки связи, имеющей 1-3 витка, степень связи которой с катушкой контура гетеродинного измерителя резонанса регулируется так, чтобы при отключенном испытываемом образце измерительный прибор давал полное отклонение. Следует учитывать, что при слишком сильной связи градуировка частоты гетеродинного измерителя резонанса несколько смещается. Чтобы не допустить ошибок, рекомендуется прослушивать тон измерительной частоты по точно отградуированному приемнику.

Проверка работоспособности измерительного моста осуществляется подключением к измерительному гнезду безындукционного резистора, имеющего точно известное сопротивление. Переменное сопротивление, при котором достигается баланс измерительной схемы, должно точно равняться (если измерительный мост правильно сконструирован) испытываемому сопротивлению. Эта же операция повторяется для нескольких сопротивлений при разных измерительных частотах. При этом выясняется частотный диапазон работы прибора. Вследствие того, что схемные элементы измерительного моста в диапазоне УКВ имеют уже комплексный характер, баланс моста становится неточным, и если в диапазоне 2 м его еще можно добиться, тщательно выполнив конструкцию моста, то в диапазоне 70 см рассмотренный измерительный мост совершенно неприменим.

После проверки работоспособности измерительного моста его можно использовать для практических измерений.

На рис. 14-17 изображена конструкция антенноскопа, предложенная W 2AEF.

Определение входного сопротивления антенны

Измерительное гнездо измерительного моста непосредственно подключается к зажимам питания антенны. Если резонансная частота антенны была измерена ранее с помощью гетеродинного измерителя резонанса, то мост питается высокочастотным напряжением этой частоты. Изменяя переменное сопротивление, добиваются нулевого показания измерительного прибора; при этом считываемое сопротивление равно входному сопротивлению антенны. Если же резонансная частота антенны заранее не известна, то частоту, питающую измерительный мост, изменяют До тех пор, пока не получают однозначного баланса измерительного моста. При этом частота, обозначенная на шкале измерительного генератора, равна резонансной частоте антенны, а сопротивление, полученное по шкале переменного сопротивления, равно входному сопротивлению антенны. Изменяя параметры схемы согласования, можно (не изменяя частоты возбуждения высокочастотного измерительного моста) получить заданное входное сопротивление антенны, контролируя его по антенноскопу.

Если проводить измерение непосредственно в точках питания антенны неудобно, то в этом случае между измерительным мостом можно включить линию, имеющую электрическую длину Я/2 или длину, кратную этой длине (2·λ/2, 3·λ/2, 4·λ/2 и т. д.) и обладающую любым волновым сопротивлением. Как известно, такая линия трансформирует сопротивление, подключенное к ее входу, в отношении 1: 1, и поэтому ее включение не отражается на точности измерения входного сопротивления антенны с помощью высокочастотного измерительного моста.

Определение коэффициента укорочения высокочастотной линии передачи

Точная длина λ/2 отрезка линии также может быть определена с помощью антенноскопа.

Достаточно длинный свободно подвешенный отрезок линии на одном конце замыкается, а другим концом подключается к измерительному гнезду моста. Переменное сопротивление устанавливается в нулевое положение. Затем медленно изменяют частоту гетеродинного измерителя резонанса, начиная с низких частот, и переходят к более высоким частотам, до тех пор пока не достигается баланс моста. Для этой частоты электрическая длина точно равна λ/2. После этого несложно определить коэффициент укорочения линии. Например, для отрезка коаксиального кабеля длиной 3,30 м при частоте измерений 30 Мгц (10 м ) достигается первый баланс моста; отсюда λ/2 равно 5,00 м . Определяем коэффициент укорочения: $$k=\frac{геометрическая длина}{эектрическая длина}=\frac{3,30}{5,00}=0,66.$$

Так как баланс моста имеет место не только при электрической длине линии, равной λ/2, но и при длинах, кратных ей, то следует найти второй баланс моста, который должен быть при частоте 60 Мгц. Длина линии для этой частоты равна 1λ. Полезно помнить, что коэффициент укорочения коаксиальных кабелей равен приблизительно 0,65, ленточных кабелей - 0.82 и двухпроводных линий с воздушной изоляцией - приблизительно 0,95. Так как измерение коэффициента укорочения с помощью антенноскопа несложно, то следует конструировать все схемы трансформаторов, используя методику измерения коэффициента укорочения, описанную выше.

Антенноскоп можно также использовать для проверки точности размеров λ/2 линии. Для этого к одному концу линии подключается резистор с сопротивлением меньше 500 ом , а другой конец линии подключается к измерительному гнезду моста; при этом переменное сопротивление (в случае, если линия имеет электрическую длину, в точности равную λ/2) равняется сопротивлению, подключенному к другому концу линии.

С помощью антенноскопа может быть определена также точная электрическая длина λ/4 линии. Для этого свободный конец линии не замыкается, и, изменяя частоту гетеродинного измерителя резонанса таким же образом, как было описано выше, определяют самую низкую частоту, при которой (при нулевом положении переменного сопротивления) достигается первый баланс мостовой схемы. Для этой частоты электрическая длина линии точно равна λ/4. После этого можно определить трансформирующие свойства λ/4 линии и рассчитать ее волновое сопротивление. Например, к концу четвертьволновой линии подключается резистор сопротивлением 100 ом .Изменяя переменное сопротивление, добиваются баланса моста при сопротивлении Z M = 36 ом . После подстановки в формулу $Z_{тр}=\sqrt{Z_{M}\cdot{Z}}$ получаем: $Z_{тр}=\sqrt{36\cdot{100}}=\sqrt{3600}=60 ом$. Таким образом, как мы видели, антенноскоп, несмотря на свою простоту, позволяет решить почти все задачи, связанные с согласованием линии передачи с антенной.

Поляризация электромагнитных волн

Поляризация электромагнитных волн (франц. polarisation; первоисточник: греч. polos ось, полюс) - нарушение осевой симметрии поперечной волны относительно направления распространения этой волны. В неполяризованной волне колебания векторов s и v смещения и скорости в случае упругих волн или векторов Е и Н напряжённостей электрических и магнитного полей в случае электромагнитных волн в каждой точке пространства по всевозможным направлениям в плоскости, перпендикулярной направлению распространения волны, быстро и беспорядочно сменяют друг друга, так что ни одно из этих направлений колебаний не является преимущественным. Поперечную волну назовут поляризованной, если в каждой точке пространства направление колебаний сохраняется неизменным или изменяется с течением времени по определённому закону. Плоскополяризованной (линейно-поляризованной) назовут волну с неизменным направлением колебаний, соответственно векторов s или Е. Если концы этих векторов описывают с течением времени окружности или эллипсы, то волну назовут циркулярно или эллиптически - поляризованной. Поляризованная волна может возникнуть: вследствие отсутствия осевой симметрии в возбуждающем волну излучателе; при отражении и преломлении волн на границе раздела двух сред (см. Брюстера закон); при распространении волны в анизотропной среде (см. Двойное лучепреломление).
(см. Большой энциклопедический политехнический словарь)
На практике: если сигнал с телецентра идёт в горизонтальной поляризации, то вибраторы антенны должны быть расположены параллельно плоскости земли, если сигнал передаётся в вертикальной поляризации, то вибраторы антенны должны быть расположены перпендикулярно плоскости земли, если сигналы передаются в двух поляризациях, то нужно использовать две антенны и сигналы с них суммировать. В зоне уверенного приёма можно поставить одну антенну под углом 45 градусов к плоскости земли.
Спутниковый телевизионный сигнал передаётся на Землю в линейной и в круговой поляризации. Для приёма таких сигналов используют разные конверторы: например, для Континент ТВ- линейный конвертор, а для Триколор ТВ - циркулярный конвертор. Форма и размер тарелки не оказывает на поляризацию никакого влияния.

Важным параметром антенн является входное сопротивление: (входной импеданс антенны), характеризующее её как нагрузку для передающего устройства или фидера. Входным сопротивлением антенны называется отношение напряжения между точкой подключения (точкой возбуждения) антенны к фидеру, к току в этих точках. Если антенна питается волноводом, то входное сопротивление определяется отражениями, возникающими в волноводном тракте. Входное сопротивление антенны состоит из суммы сопротивления излучения антенны и сопротивления потерь: Z = R(изл) + R (пот). R(изл) - в общем случае величина комплексная. В резонансе реактивная составляющего входного импеданса должна быть равна нулю. На частотах выше резонансной импеданс имеет - индуктивный характер, а на частотах ниже резонансной - емкостной характер, что вызывает потерю мощности на границах рабочей полосы антенны. R (пот) - сопротивление потерь антенны зависит от многих факторов, например, от близости ее к поверхности Земли или проводящим поверхностям, омических потерь в элементах и проводах антенны, потерь в изоляции. Входной импеданс антенны должен быть согласован с волновым сопротивлением фидерного тракта (или с выходным сопротивлением передатчика) так, чтобы обеспечить в последнем режим, близкий к режиму бегущей волны.
У телевизионных антенн входной импеданс: логопериодической антенны - 75 Ом, у волнового канала - 300 Ом. Для антенн волнового канала при использовании телевизионного кабеля с волновым сопротивлением 75 Ом требуется согласующее устройство, ВЧ трансформатор.



Коэффициент стоячей волны (KСВ)

Коэффициент стоячей волны характеризует степень согласования антенны с фидером, а также согласование выхода передатчика и фидера. На практике всегда часть передаваемой энергии отражается и возвращается в передатчик. Отраженная энергия вызывает перегрев передатчика и может его повредить.

КСВ рассчитывается следующим образом:
KСВ = 1 / KБВ = (U пад + U отр) / (U пад - U отр), где U пад и U отр - амплитуды падающей и отраженной электромагнитных волн.
С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением: KБВ = (U пад + U отр) / (U пад - U отр)
В идеале КСВ=1, значения до 1,5 считаются приемлемым.

Диаграмма направленности (ДН)

Диаграмма направленности является одной из самых наглядных характеристик приёмных свойств антенны. Построение диаграмм направленности производится в полярных или в прямоугольных (декартовых) координатах. Рассмотрим для примера построенную в полярных координатах диаграмму направленности антенны типа «волновой канал» в горизонтальной плоскости (рис. 1). Координатная сетка состоит из двух систем линий. Одна система линий представляет собой концентрические окружности с центром в начале координат. Окружности наибольшего радиуса соответствует максимальной ЭДС, значение которой условно принято равным единице, а остальные окружности - промежуточные значения ЭДС от единицы до нуля. Другая система линий, образующих координатную сетку, представляет собой пучок прямых, которые делят центральный угол в 360° на равные части. В нашем примере этот угол разделен на 36 частей по 10° в каждой.

Положим, что радиоволна приходит с направления, показанного на рис. 1 стрелкой (угол 10°). Из диаграммы направленности видно, что этому направлению прихода радиоволны соответствует максимальная ЭДС на клеммах антенны. При приеме радиоволн, приходящих с любого другого направления, ЭДС на клеммах антенны будет меньше. Например, если радиоволны приходят под углами 30 и 330° (т. е. под углом 30° к оси антенны со стороны директоров), то значение ЭДС будет равно 0,7 максимальной, под углами 40 и 320° - 0,5 максимальной и т. д.

На диаграмме направленности (рис. 1) видны три характерные области - 1, 2 и 3. Область 1, которой соответствует наибольший уровень принятого сигнала, называют основным, или главным лепестком диаграммы направленности. Области 2 и 3, находящиеся со стороны рефлектора антенны, носят название задних и боковых лепестков диаграммы направленности. Наличие задних и боковых лепестков свидетельствует о том, что антенна принимает радиоволны не только спереди (со стороны директоров), но и сзади (со стороны рефлектора), что снижает помехоустойчивость приема. В связи с этим при настройке антенны стремятся уменьшить число и уровень задних и боковых лепестков.
Описанную диаграмму направленности, характеризующую зависимость ЭДС на клеммах антенны от направления прихода радиоволны, часто называют диаграммой направленности по «полю», так как ЭДС пропорциональна напряженности электромагнитного поля в точке приема. Возведя в квадрат ЭДС, соответствующую каждому направлению прихода радиоволны, можно получить диаграмму направленности по мощности (пунктирная линия на рис. 2).
Для численной оценки направленных свойств антенны пользуются понятиями угла раствора основного лепестка диаграммы направленности и уровня задних и боковых лепестков. Углом раствора основного лепестка диаграммы направленности называют угол, в пределах которого ЭДС на клеммах антенны спадает до уровня 0,7 от максимальной. Угол раствора можно также определить, пользуясь диаграммой направленности по мощности, по ее спаду до уровня 0,5 от максимальной (угол раствора по «половинной» мощности). В обоих «случаях численное значение угла раствора получается, естественно, одним и тем же.
Уровень задних и боковых лепестков диаграммы направленности по напряжениюопределяется как отношение ЭДС на клеммах антенны при приеме со стороны максимума заднего или бокового лепестка к ЭДС со стороны максимума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается уровень наибольшего лепестка.

Коэффициент направленного действия (КНД)

Коэффициент направленного действия: (КНД) передающей антенны - отношение квадрата напряженности поля, создаваемой антенной в направлении главного лепестка, к квадрату напряженности поля создаваемой ненаправленной или направленной эталонной антенной (полуволновый вибратор - диполь, коэффициент направленного действия которого по отношению к гипотетической ненаправленной антенне равен 1,64 или 2,15 дБ) при одинаковой подводимой мощности. (КНД) является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд). Чем уже главный лепесток (ДН) и меньше уровень боковых лепестков, тем больше КНД.
Реальный выигрыш антенны по мощности относительно гипотетического изотропного излучателя или полуволнового вибратора характеризуется коэффициентом усиления по мощности КУ(Мощ.), который связан с (КНД) соотношением:
КУ(Мощ.) = КНД - КПД (коэффициент полезного действия антенны)

Коэффициент усиления (КУ)

Коэффициент усиления (КУ) антенны - отношение мощности на входе эталонной антенны к мощности, подводимой к входу рассматриваемой антенны, при условии, что обе антенны создают в данном направлении на одинаковом расстоянии равные значения напряженности поля при излучении мощности, а при приёме - отношение мощностей, выделяемых на согласованных нагрузках антенн.
КУ является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд).
Усиление антенны характеризуется выигрышем по мощности (напряжению), которая выделяется в согласованной нагрузке, подключенной к выходным зажимам рассматриваемой антенны, по сравнению с "изотропной" (то есть имеющей круговую ДН) антенной или, например, полуволновым вибратором. При этом надо учитывать направленные свойства антенны и потери в ней (КПД). У телевизионных приёмных антенн (КУ) равен, примерно, коэффициенту направленного действия (КНД) антенны, т.к. коэффициент полезного действия таких антенн находится в пределах 0,93…0,96. Коэффициент усиления широкополосных антенн зависит от частоты и неравномерен во всей полосе частот. В паспорте на антенну нередко указывают максимальное значение (КУ).

Коэффициент полезного действия (КПД)

В режиме передачи, (КПД) - это отношение мощности излучаемой антенной к мощности, подведённой к ней, так как существуют потери в выходном каскаде передатчика, в фидере и самой антенне, КПД антенны всегда меньше 1. В приёмных телевизионных антеннах КПД находится в пределах 0,93…0,96.